您好,欢迎光临本网站![请登录][注册会员]  
文件名称: Learning Recurrent Neural Networks with Hessian-Free Optimization
  所属分类: 搜索引擎
  开发工具:
  文件大小: 295kb
  下载次数: 0
  上传时间: 2018-07-22
  提 供 者: weixin_********
 详细说明: James Martens JMARTENS @ CS . TORONTO . EDU Ilya Sutskever ILYA @ CS . UTORONTO . CA University of Toronto, Canada Abstract In this work we resolve the long-outstanding problem of how to effectively train recurrent neu- ral networks (RNNs) on complex and difficult sequence modeling problems which may con- tain long-term data dependencies. Utilizing re- cent advances in the Hessian-free optimization approach (Martens, 2010), together with a novel damping scheme, we successfully train RNNs on two sets of challenging problems. Firs t, a col- lection of pathological synthetic datasets which are known to be impossible for standard op- timization approaches (due to their extremely long-term dependencies), and second, on three natural and highly complex real-world sequence datasets where we find that our method sig- nificantly outperforms the previous state-of-the- art method for training neural sequence mod- els: the Long Short-term Memory approach of Hochreiter and Schmidhuber (1997). Addition- ally, we offer a new interpretation of the gen- eralized Gauss-Newton matrix of Schraudolph (2002) which is used within the HF approach of Martens. ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: