文件名称:
Visual Knowledge Discovery and Machine Learning
开发工具:
文件大小: 12mb
下载次数: 0
上传时间: 2018-07-30
详细说明: Emergence of Data Science placed knowledge discovery, machine learning, and data mining in multidimensional data, into the forefront of a wide range of current research, and application activities in computer science, and many domains far beyond it. Discovering patterns, in multidimensional data, using a combination of visual and analytical machine learning means are an attractive visual analytics opportunity. It allows the injection of the unique human perceptual and cognitive abilities, directly into the process of discovering multidimensional patterns. While this opportunity exists, the long-standing problem is that we cannot see the n-D data with a naked eye. Our cognitive and perceptual abilities are perfected only in the 3-D physical world. We need enhanced visualization tools (“n-D glasses”) to represent the n-D data in 2-D completely, without loss of information, which is important for knowledge discovery. While multiple visualization methods for the n-D data have been developed and successfully used for many tasks, many of them are non-reversible and lossy. Such methods do not represent the n-D data fully and do not allow the restoration of the n-D data completely from their 2-D representation. Respectively, our abilities to discover the n-D data patterns, from such incomplete 2-D representations, are limited and potentially erroneous. The number of available approaches, to overcome these limitations, is quite limited itself. The Parallel Coordinates and the Radial/Star Coordinates, today, are the most powerful reversible and lossless n-D data visualization methods, while suffer from occlusion. There is a need to extend the class of reversible and lossless n-D data visual representations, for the knowledge discovery in the n-D data. A new class of such representations, called the General Line Coordinate (GLC) and several of their specifications, are the focus of this book. This book describes the GLCs, and their advantages, which include analyzing the data of the Challenger disaster, World hunger, semantic shift in humorous texts, image processing, medical computer-aided diagnostics, stock market, and the currency exchange rate predictions. Reversible methods for visualizing the n-D data have the advantages as cognitive enhancers, of the human cognitive abilities, to discover the n-D data patterns. ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.