您好,欢迎光临本网站![请登录][注册会员]  
文件名称: An Introduction to Statistical Learning with Application in R (1)
  所属分类: 数据库
  开发工具:
  文件大小: 7mb
  下载次数: 0
  上传时间: 2018-09-21
  提 供 者: qq_41******
 详细说明: Statistical learning refers to a set of tools for modeling and understanding complex datasets. It is a recently developed area in statistics, and blends with parallel developments in computer science, and in particular machine learning. The field encompasses many methods such as the lasso and sparse regression, classification and regression trees, and boosting and support vector machines. With the explosion of “Big Data” problems statistical learning has be- come a very hot field in many scientific areas as well as marketing, fi nance and other business disciplines. People with statistical learning skills are in high demand. One of the first books in this area — The Elements of Statistical Learn- ing (ESL) (Hastie, Tibshirani, and Friedman) — was published in 2001, with a second edition in 2009. ESL has become a popular text not only in statistics but also in related fields. One of the reasons for ESL’s popu- larity is its relatively accessible style. But ESL is intended for individuals with advanced training in the mathematical sciences. An Introduction to Statistical Learning (ISL) arose from the perceived need for a broader and less technical treatment of these topics. In this new book, we cover many of the same topics as ESL, but we concentrate more on the applications of the methods and less on the mathematical details. We have created labs illustrating how to implement each of the statistical learning methods using the popular statistical software package R . These labs provide the reader with valuable hands-on experience. This book is appropriate for advanced undergraduates or master’s stu- dents in Statistics or related quantitative fields, or for individuals in other disciplines who wish to use statistical learning tools to analyze their data. It can be used as a textbook for a course spanning one or two semesters. We would like to thank several readers for valuable comments on prelim- inary drafts of this book: Pallavi Basu, Alexandra Chouldechova, Patrick Danaher, Will Fithian, Luella Fu, Sam Gross, Max Grazier G’Sell, Court- ney Paulson, Xinghao Qiao, Elisa Sheng, Noah Simon, Kean Ming Tan, Xin Lu Tan. It’s tough to make predictions, especially about the future. -Yogi Berra ...展开详情收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: R语言
 输入关键字,在本站1000多万海量源码库中尽情搜索: