开发工具:
文件大小: 870byte
下载次数: 0
上传时间: 2018-10-08
详细说明: 实验步骤与内容: 1. 下载数据包ex3Data.zip并解压。 2. 对于这个练习,假设一所高中有一个数据集,代表40名被录取的学生和40名未被录取的学生。 每个(x (i),y(i)) 数据包括两个标准化考试中学生的分数和学生是否被录取的标签。任务是建立一个二元分类模型,根据学生在两次考试中的成绩来估计大学录取机会。 3. polt data:使用不同的符号来表示录取结果,画出图像。 4. 假设模型的函数为sigmoid function: 进行求最优解的代价函数cost function J(θ): 要求的就是J(θ)的最大值(极大似然估计),我们可以选用之前实验使用的梯度下降法,但是该方法的迭代次数较多,所以本次实验中使用的是牛顿迭代法: 牛顿方法: 用Hessian矩阵表示: 5. 在编程序前,要分析下各个计算公式中变量的维度(矩阵行列数)。实验中应定义 θ为0向量,迭代次数通常在5-15次,决策边界定义为: 即 6. 回答下面问题: (1) θ值为多少?我们需要迭代几次? (2) Exam1为20分,e xam2为80分的同学会被录取吗? ...展开详情收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.