您好,欢迎光临本网站![请登录][注册会员]  
文件名称: Learning generative adversarial networks : next-generation deep learning
  所属分类: 深度学习
  开发工具:
  文件大小: 10mb
  下载次数: 0
  上传时间: 2018-10-27
  提 供 者: wang106*******
 详细说明: Chapter 1, Introduction to Deep Learning, speaks all about refreshing general concepts and terminology associated with deep learning in a simple way without too much math and equations. Also, it will show how deep learning network has evolved throughout the years and how they are making an inroad in the unsupervised domain with the emergence of generative models. Chapter 2, Unsupervised Learning with GAN, shows how Generative Adversarial Networks work and speaks about the building blocks of GANs. It will show how deep learning n etworks can be used on semi-supervised domains, and how you can apply them to image generation and creativity. GANs are hard to train. This chapter looks at some techniques to improve the training/learning process. Chapter 3, Transfer Image Style Across Various Domains, speaks about being very creative with simple but powerful CGAN and CycleGAN models. It explains the use of Conditional GAN to create images based on certain characteristics or conditions. This chapter also discusses how to overcome model collapse problems by stabilizing your network training using BEGAN. And finally, it covers transferring styles across different domains (apple to orange; horse to zebra) using CycleGAN. Chapter 4, Building Realistic Images from Your Text, presents the latest approach of stacking Generative Adversarial Networks into multiple stages to decompose the problem of text to image synthesis into two more manageable subproblems with StackGAN. The chapter also shows how DiscoGAN successfully transfers styles across multiple domains to generate output images of handbags from the given input of shoe images or to perform gender transformations of celebrity images. Chapter 5, Using Various Generative Models to Generate Images, introduces the concept of a pretrained model and discusses techniques for running deep learning and generative models over large distributed systems using Apache Spark. We will then enhance the resolution of low quality images using pretrained models with GAN. And finally, we will learn other varieties of generative models such as DeepDream and VAE for image generation and styling. Chapter 6, Taking Machine Learning to Production, describes various approaches to deploying machine learning and deep learning-based intelligent applications to production both on data center and the cloud using microservice-based containerized or serverless techniques. ...展开详情收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: 对抗神经网络
 输入关键字,在本站1000多万海量源码库中尽情搜索: