开发工具:
文件大小: 23mb
下载次数: 0
上传时间: 2018-11-23
详细说明: 《无理数引论》内容简介:自从1978年R.Apéry证明了ζ(3)的无理性以来,ζ函数在奇数上的值的无理性研究一直是引人注目的数论课题。《无理数引论》给出与此有关的一些基本结果(如ζ(3)的无理性的Apéry原证和Beukers的证明等)以及近些年来T.Rivoal和V.V.Zudilin等人的新进展(如ζ(2k+1)(k≥1)中有无穷多个无理数;ζ(5),ζ(7),ζ(9),ζ(11)中至少有一个无理数;等等);此外,还给出无理数理论的一些经典结果和方法,如无理数的意义和分类、无理性的刻画及度量、无理数的有理逼近和连分数展开、数的无理性证明的初等方法、无理数的构造、无理数的正规性等;特别着重于数的无理性的判别法则和一些特殊类型的无理数(如Erdos的无理性级数、Mahler小数、Champernowne数、Fibonacii数、Lucas数及Fermat数的倒数的级数等)。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: