您好,欢迎光临本网站![请登录][注册会员]  
文件名称: b+树,learning index
  所属分类: 机器学习
  开发工具:
  文件大小: 402kb
  下载次数: 0
  上传时间: 2018-11-29
  提 供 者: wang159********
 详细说明: ## A C++11 implementation of the B-Tree part of "The Case for Learned Index Structures" A research **proof of concept** that implements the B-Tree section of [The Case for Learned Index Structures](https://arxiv.org/pdf/1712.01208.pdf) paper in C++. The general design is to have a single lookup structure that you can parameterize with a KeyType and a ValueType, and an overflow list that keeps new inserts until you retrain. There is a value in the constructor of the RMI that triggers a retrain when the overflow array reaches a certain size. The basic API: ```c++ // [first/second]StageParams are network parameters int maxAllowedError = 256; int maxBufferBeforeRetrain = 10001; auto modelIndex = RecursiveModelIndex recursiveModelIndex(firstStageParams, secondStageParams, maxAllowedError, maxBufferBeforeRetrain); for (int ii = 0; ii < 10000; ++ii) { modelIndex.insert(ii, ii * 2); } // Since we still have one more insert before retraining, retrain before searching... modelIndex.train(); auto result = modelIndex.find(5); if (result) { std::cout << "Yay! We got: " << result.get().first << ", " << result.get().second << std::endl; } else { std::cout << "Value not found." << std::endl; // This shouldn't happen in the above usage... } ``` See [src/main.cpp](src/main.cpp) for a usage example where it stores scaled log normal data. ### Dependencies - [nn_cpp](https://github.com/bcaine/nn_cpp) - Eigen based minimalistic C++ Neural Network library - [cpp-btree](https://code.google.com/archive/p/cpp-btree/) - A fast C++ implementation of a B+ Tree ### TODO: - Lots of code cleanup - Profiling of where the slowdowns are. On small tests, the cpp_btree lib beats it by 10-100x - Eigen::TensorFixed in nn_cpp would definitely help - Increasing dataset size may lead to more of an advantage to the RMI - Being much, much more efficient with memory and conversions (lots of casting) - Very non-linear data the second stage tends to break down or stop performing on. - A non-trivial amount of our second stage "dies" in the sense that we don't use it for predictions. - The larger the dataset, or the more second stage nodes, the more likely this is. Bug somewhere? - Experimenting/tuning of training parameters - Still more learning rate sensitive than I'd like - Checking, and failing if there are non-integer keys - Tests on the actual RMI code (instead of using tests for experiments) - Move retrain to non-blocking thread - Logging ...展开详情收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索:
 输入关键字,在本站1000多万海量源码库中尽情搜索: