您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 基于图像的人体检测跟踪和人脸识别的研究
  所属分类: 硬件开发
  开发工具:
  文件大小: 2mb
  下载次数: 0
  上传时间: 2018-12-28
  提 供 者: weixin_********
 详细说明:计算机视觉通常是指计算机通过控制和应用传感器等设备对周围的环境进行获取的过程,然后对获取的视觉信息进行后期加工,包括表示、压缩、分析、处理、储存等,进而实现人类视觉所具有的“看”的功能。近年来计算机技术、光电技术和自动化技术的飞速发展,促成了计算机视觉系统的出现,同时随着人类生产生活需求的不断提高,视觉化、智能化的解决方案也越来越广泛的应用于工业生产、医疗和军事等领域,计算机视觉技术已经成为各国研究者关注和研究的热点。对计算机视觉系统的研究无论是在理论研究还是实际应用方面都有巨大的价值和意义。 基于图像的人体检测跟踪和人脸识别是当今计算机视觉和模式识别领域的热点研究问题,它在图像处理、智能监控、智能汽车等领域有着广泛的应用前景。本文针对人体检测跟踪和人脸识别中的一些关键问题进行研究,并取得了一定的进展,具体有如下四个方面:在人体检测方面,图像中复杂背景的变化对人体检测产生了负面的影响,比如产生空洞或者噪声,针对此类问题本文提出了基于二次连通域处理的人体检测方法,算法采用三帧差法提取运动目标,在得到二值图像后,运用数学形态学方法对二值图像进行膨胀腐蚀处理,接着利用四方向连接法和连通域三次扫描标记法去除空洞并连接断开的区域,最后利用HOG特征训练分类器来识 别运动目标是否是人体。与传统方法不同的是,本文采用的四方向连接和连通域三次扫描标记法对于运动目标存在的空洞弥补效果更好,可以更加准确的连接断开区域,该方法对运动物体所在的环境没有约束,计算量较小,准确性高。实验结果表明,该方法是一种对于背景有一定鲁棒性的人体检测方法。 在人体跟踪方面,经典的Meanshift算法被广泛的用于计算机视觉和模式识别领域,但是当背景扰动的时候会使跟踪的准确性降低,针对此类问题本文提出了基于改进Meanshift的人体跟踪方法,算法通过判别跟踪区域是背景区域或前景区域来设置权重系数,进而实现定位更加准确的运动人体跟踪。与现有的方法相比,该方法减少了背景区域的计算量,同时将跟踪区域精确到运动人体,结合卡尔曼滤波器来预测运动人体下一步的方向,使得跟踪效果更好。实验结果表明,改进的方法相比传统Meanshift算法在准确度上要更加出色. 在光照预处理方面,由于光照对于人脸识别有重要的影响,比如高光、低光、单侧光等都会导致人脸识别率降低、误识率升高等一系列问题,所以本文提出了一种改进的高斯差分滤波光照预处理方法,通过改变高斯差分滤波器的水平方向和垂直方向的参
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索:
 输入关键字,在本站1000多万海量源码库中尽情搜索: