文件名称:
Introduction to Machine Learning (2014)
开发工具:
文件大小: 7mb
下载次数: 0
上传时间: 2019-04-04
详细说明: Summary An introductory text in machine learning that gives a unified treatment of methods based on statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining. The goal of machine learning is to program computers to use example data or past experience to solve a given prob lem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, recognize faces or spoken speech, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. It discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.After an introduction that defines machine learning and gives examples of machine learning applications, the book covers supervised learning, Bayesian decision theory, parametric methods, multivariate methods, dimensionality reduction, clustering, nonparametric methods, decision trees, linear discrimination, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, combining multiple learners, and reinforcement learning. Brief Contents 1 Introduction 1 2 Supervised Learning 21 3 Bayesian Decision Theory 49 4 Parametric Methods 65 5 Multivariate Methods 93 6 Dimensionality Reduction 115 7 Clustering 161 8 Nonparametric Methods 185 9 Decision Trees 213 10 Linear Discrimination 239 11 Multilayer Perceptrons 267 12 Local Models 317 13 Kernel Machines 349 14 Graphical Models 387 15 Hidden Markov Models 417 16 Bayesian Estimation 445 17 Combining Multiple Learners 487 18 Reinforcement Learning 517 19 Design and Analysis of Machine Learning Experiments 547 A Probability 593
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: