开发工具:
文件大小: 6kb
下载次数: 0
上传时间: 2019-05-06
详细说明: ClusterManager:在Standalone模式中即为Master(主节点),控制整个集群,监控Worker。在YARN模式中为资源管理器。 Worker:从节点,负责控制计算节点,启动Executor。在YARN模式中为NodeManager,负责计算节点的控制。 Driver:运行Application的main()函数并创建SparkContext。 Executor:执行器,在worker node上执行任务的组件、用于启动线程池运行任务。每个Application拥有独立的一组Executors。 SparkContext:整个应用的上下文,控制应用的生命周期。 RDD:Spark的基本计算单元,一组RDD可形成执行的有向无环图RDD Gra ph。 DAG Scheduler:实现将Spark作业分解成一到多个Stage,每个Stage根据RDD的Partition个数决定Task的个数,然后生成相应的Task set放到TaskScheduler中。 TaskScheduler:将任务(Task)分发给Executor执行。 Stage:一个Spark作业一般包含一到多个Stage。 Task:一个Stage包含一到多个Task,通过多个Task实现并行运行的功能。 Transformations:转换(Transformations) (如:map, filter, groupBy, join等),Transformations操作是Lazy的,也就是说从一个RDD转换生成另一个RDD的操作不是马上执行,Spark在遇到Transformations操作时只会记录需要这样的操作,并不会去执行,需要等到有Actions操作的时候才会真正启动计算过程进行计算。 Actions:操作(Actions) (如:count, collect, save等),Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。 SparkEnv:线程级别的上下文,存储运行时的重要组件的引用。 SparkEnv内创建并包含如下一些重要组件的引用。 MapOutPutTracker:负责Shuffle元信息的存储。 BroadcastManager:负责广播变量的控制与元信息的存储。 BlockManager:负责存储管理、创建和查找块。 MetricsSystem:监控运行时性能指标信息。 SparkConf:负责存储配置信息。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: