文件名称:
深度强化学习 ( DQN )基本原理与AI项目实战 教学视频 代码资料
开发工具:
文件大小: 948byte
下载次数: 0
上传时间: 2019-07-11
详细说明: 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益。其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。 在强化学习的世界里, 算法称之为Agent, 它与环境发生交互,Agent从环境中获取状态(state),并决定自己要做出的动作(action).环境会根据自身的逻辑给Agent予以奖励(reward)。奖励有正向和反向之分。比如在游戏中,每击中一个敌人就是正向的奖励,掉血或者游戏结束就是反向的奖励。 课程内容】 强化学习简介 强化学习基本概念 马尔科夫决策过程 Bellman方程 值迭代求解 代码实战求解过程 QLearning基本原理 QL earning迭代计算实例 QLearning迭代效果 求解流程详解 DeepQnetwork原理 DQN网络细节 DQN网络参数配置 搭建DQN网络模型 DQN卷积操作定义 数据预处理 实验阶段数据存储 实现训练模块 Debug解读训练代码 完整代码流程分析 DQN效果演示
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: