文件名称:
主题模型Python工具包Gensim.zip
开发工具:
文件大小: 41mb
下载次数: 0
上传时间: 2019-07-18
详细说明: Gensim是一个相当专业的主题模型Python工具包。在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性。评论和商品描述的相似度越高,说明评论的用语比较官方,不带太多感*彩,比较注重描述商品的属性和特性,角度更客观。gensim就是 Python 里面计算文本相似度的程序包。示例代码:针对商品评论和商品描述之间的相似度,怎么使用gensim来计算?原理1、文本相似度计算的需求始于搜索引擎。搜索引擎需要计算“用户查询”和爬下来的众多”网页“之间的相似度,从而把最相似的排在最前返回给用户。2、主要使用的算法是tf-idftf:term frequency词频idf:inverse document freq uency倒文档频率主要思想是:如果某个词或短语在一篇文章中出现的频率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。第一步:把每个网页文本分词,成为词包(bag of words)。第三步:统计网页(文档)总数M。第三步:统计第一个网页词数N,计算第一个网页第一个词在该网页中出现的次数n,再找出该词在所有文档中出现的次数m。则该词的tf-idf 为:n/N * 1/(m/M) (还有其它的归一化公式,这里是最基本最直观的公式)第四步:重复第三步,计算出一个网页所有词的tf-idf 值。第五步:重复第四步,计算出所有网页每个词的tf-idf 值。3、处理用户查询第一步:对用户查询进行分词。第二步:根据网页库(文档)的数据,计算用户查询中每个词的tf-idf 值。4、相似度的计算使用余弦相似度来计算用户查询和每个网页之间的夹角。夹角越小,越相似。 标签:Gensim
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: