您好,欢迎光临本网站![请登录][注册会员]  
文件名称: Investigating Robustness and LinkPredictionAdversarialModifications.pdf
  所属分类: 深度学习
  开发工具:
  文件大小: 417kb
  下载次数: 0
  上传时间: 2019-08-09
  提 供 者: qq_31******
 详细说明: Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on improving accuracy and overlook other aspects such as robustness and interpretability. In this paper, we propose adversarial modifications for link prediction m odels: identifying the fact to add into or remove from the knowledge graph that changes the prediction for a target fact after the model is retrained. Using these single modifications of the graph, we identify the most influential fact for a predicted link and evaluate the sensitivity of the model to the addition of fake facts. We introduce an efficient approach to estimate the effect of such modifications by approximating thechangeintheembeddingswhentheknowledge graph changes. To avoid the combinatorial search over all possible facts, we train a network to decode embeddings to their corresponding graph components, allowing the use of gradient-based optimization to identify the adversarial modification. We use these techniquestoevaluatetherobustnessoflinkprediction models (by measuring sensitivity to additional facts), study interpretability through the factsmostresponsibleforpredictions(byidentifying the most influential neighbors), and detect incorrect facts in the knowledge base.
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索:
 输入关键字,在本站1000多万海量源码库中尽情搜索: