您好,欢迎光临本网站![请登录][注册会员]  
文件名称: MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar
  所属分类: 其它
  开发工具:
  文件大小: 6kb
  下载次数: 0
  上传时间: 2019-08-12
  提 供 者: weixin_********
 详细说明: MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar (最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正) (声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计) (按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了FPE, AIC, MDL, CAT集中准则一并估计,并采用试验方法 确定那一个阶次更好。) ………………………………以上省略…………………………………………………………………… 假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下: Y = x; Y(1:n) = []; m = N-n; X = [];% 构造系数矩阵 for i = 1:m     for j = 1:n         X(i,j) = xt(n i-j);     end end beta = inv(X*X)*X*Y; 复制代码 beta即为用最小二乘法估计出的模型参数。 此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。 4.3.3 AR模型阶次的选择及实验设计 文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(Singular Value Decomposition, SVD)定阶法、最小预测定误差阶准则(Final Prediction Error Criterion, FPE)、AIC定阶准则(Akaika’s Information theoretic Criterion, AIC)、MDL定阶准则以及CAT定阶准则。文献[28]中还介绍了一种BIC定阶准则。SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。 以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分): for m = 1:N-1    ……       % 判断是否达到所选定阶准则的要求    if strcmp(criterion,FPE)        objectfun(m 1) = (N (m 1))/(N-(m 1))*E(m 1);    elseif strcmp(criterion,AIC)        objectfun(m 1) = N*log(E(m 1)) 2*(m 1);    elseif strcmp(criterion,MDL)        objectfun(m 1) = N*log(E(m 1)) (m 1)*log(N);    elseif strcmp(criterion,CAT)        for index = 1:m 1            temp = temp (N-index)/(N*E(index));        end        objectfun(m 1) = 1/N*temp-(N-(m 1))/(N*E(m 1));    end        if objectfun(m 1) >= objectfun(m)        orderpredict = m;        break;    end end 复制代码 orderpredict变量即为使用相应准则预测的AR模型阶次。 (注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion) 登录/注册后可看大图 程序1.JPG (35.14 KB, 下载次数: 20352) 下载附件  保存到相册 2009-8-28 20:54 上传 登录/注册后可看大图 程序2.JPG (51.78 KB, 下载次数: 15377) 下载附件  保存到相册 2009-8-28 20:54 上传 下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。 (注,实验信号为实验室所得,没有上传) 登录/注册后可看大图 图片1.JPG (28.68 KB, 下载次数: 5674) 下载附件  保存到相册 2009-8-28 20:54 上传
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索:
 输入关键字,在本站1000多万海量源码库中尽情搜索: