您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 基于多层训练的稀疏非负矩阵高光谱混合像元分解
  所属分类: 其它
  开发工具:
  文件大小: 709kb
  下载次数: 0
  上传时间: 2020-05-14
  提 供 者: weixin_********
 详细说明:非负矩阵分解方法不仅被用作数据降维,并且被广泛地应用于高光谱混合像元分解。由于非负矩阵分解常常陷于局部最小化,各种限制性条件被使用,如稀疏、体积等。深度学习作为一种新的数据挖掘方法被广泛地使用,其通过建立深度网络,进行贪婪学习,最终可以克服样本数据不足及陷于局部最优化的缺陷。文中借助深度学习的非监督训练方法,采用多层训练神经元进行非负矩阵高光谱混合像元分解,除此之外,数据的稀疏特性被当作先验知识用于多层网络的训练及重构。通过对真实高光谱遥感影像大量实验发现,此方法简单易行,且精度明显高于目前其它非负矩阵分解方法。
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: