文件名称:
基于PSO优化NP-FSVM的煤矸光电智能分选技术研究
开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2020-04-16
详细说明:为提高分选的稳定性和准确率,提出一种多特征融合的基于粒子群算法优化的法平面型隶属度函数模糊支持向量机(PSO-NP-FSVM)煤矸石分选方法。介绍了X射线探测识别煤矸石技术的基本原理与工作流程。对采集到的X射线图像经中值滤波去噪预处理后,分别提取灰度特征下的灰度均值、灰度方差,以及基于灰度共生矩阵的纹理特征下的能量、相关性、对比度和熵共计6个特征向量,并对选择的特征进行融合。利用法平面型隶属度函数能有效剔除孤立样本的优点,结合粒子群算法对模糊支持向量机分类器模型的主要参数进行优化,提出经优化改进后的PSO-NP-FSVM分类算法,采用相同的训练样本,与PSO-FSVM分类器模型进行仿真对比分析。最后,分别采用PSO-NP-FSVM、PSO-FSVM算法与单一灰度或纹理特征进行识别的方法建立分类器模型,并通过交叉验证的方法进行对比试验。试验研究结果表明:PSO-NP-FSVM算法经56次的迭代,参数达到最优,PSO-FSVM算法参数寻优需迭代63次;PSO-NP-FSVM算法的适应度函数值较小。通过多特征融合的PSO对NP-FSVM进行优化的分选方法,煤矸石的分选准确率达到93.8 %,
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.