开发工具:
文件大小: 391kb
下载次数: 0
上传时间: 2020-04-11
详细说明:我们观察到,一类高阶微分系统接受运动的有界积分,该运动的积分可确保动力学的经典稳定性,而经典能量是无穷大的。 我们使用拉格朗日锚的概念来证明运动的有界积分与时间平移不变性相关。 建议了在不破坏其稳定性的情况下在自由高阶导数系统中开启交互的过程。 我们还演示了使高导数动力学在量子水平上保持稳定的量化技术。 Pais-Uhlenbeck振荡器,高阶导数标量场模型和Podolsky电动力学的例子说明了一般结构。 对于所有这些模型,都明确构造了运动的正积分,并包括了相互作用,以使系统保持稳定。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.