文件名称:
TensorFlow实现AlexNet.py
开发工具:
文件大小: 6kb
下载次数: 0
上传时间: 2020-04-03
详细说明:AlexNet模型是Hinton的学生Alex Krizhevsky在2012年提出来的。AlexNet包含了几个比较新的技术点,也首次在CNN中成功应用了ReLU、Dropout和LRN等Trick。
AlexNet主要使用的新技术点如下:
(1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了sigmoid,解决了sigmoid在网络较深时的梯度弥散问题。
(2)训练时使用dropout随机忽略一部分神经元,以避免过拟合,主要是最后几个全连接层使用了dropout。
(3)在CNN中使用重叠的最大池化,避免平均池化的模糊化效果。并且提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。
(4)提出了LRN层,对局部的神经元活动创建竞争机制,使其中响应比较大的值变得更大,增强了模型的泛化能力。
(5)使用CUDA加速深度卷积网络的训练,利用GPU强大的并行计算能力,处理神经网络训练时大量的矩阵运算。
(6)数据增强,大大减轻过拟合,提升泛化能力。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.