文件名称:
切Feynman积分的图解Hopf代数:一圈情况
开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2020-04-02
详细说明:我们构造作用于一环Feynman图及其割的图解协作。 这些图自然会通过尺寸正则化中的相应(切)费曼积分来标识,该维恩积分在尺寸调节器中的洛朗膨胀系数是多个对数(MPL)。 我们的主要结果是这样的猜想,即在劳伦扩展中,这种图解式的协作按顺序再现了MPL上的协作的组合。 我们证明了我们的猜想存在于广泛的非平凡的一环积分中。 然后,我们探索其对研究Feynman积分的不连续性及其满足的微分方程的影响。 特别是,使用图解协作以及切割信息,我们可以明确推导任何一环费曼积分的微分方程。 我们还将解释如何递归构造任何一环费曼积分的符号。 最后,我们表明,在单环积分的特殊情况下,我们的图解协作来自于最近提出的
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.