开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2020-03-27
详细说明:在本文中,我们通过在渐近线性扩张背景下将其全息对偶性应用于II型弦理论,研究了弯曲流形上的6d小弦理论(LST)(N NS5-分子世界体积的解耦理论)。 我们专注于具有大量Killing向量(即最大对称空间的乘积)的背景,而不需要超对称性(除度量外,我们不打开任何背景字段)。 LST是非本地的,因此不清楚可以在哪个空间上定义; 我们表明全息术意味着该理论不能应用于负弯曲的空间,而只能应用于零或正曲率的空间。 例如,如果不打开额外的背景场,就不能将LST放在反de Sitter空间乘以另一空间的乘积上。 在具有正曲率的空间(例如S 6,ℝ2×S 4,S 3×S 3等)上,我们通常会发现(对于大
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.