开发工具:
文件大小: 280kb
下载次数: 0
上传时间: 2020-01-27
详细说明:经过几十年的研究与发展,语音识别建立了以隐马尔可夫模型(Hidden Markov Models,HMM)为基础的框架。近几年,在HMM基础上深度神经网络(Deep Neural Network,DNN)的应用大幅度提升了语音识别系统的性能。DNN将每一帧语音及其前后的几帧语音拼接在一起作为网络的输入,从而利用语音序列中上下文的信息。DNN中每次输入的帧数是固定的,不同的窗长对最终的识别结果会有影响。递归神经网络(Recurrent neural network,RNN)通过递归来挖掘序列中的上下文相关信息,在一定程度上克服了DNN的缺点。但是RNN在训练中很容易出现梯度消失的问题,无法记忆长时信息。长短期记忆单元(Long Short-Term Memory,LSTM)通过特定的门控单元使得当前时刻的误差能够保存下来并选择性传给特定的单元,从而避免了梯度消失的问题。本文对RNN及LSTM的基本原理进行了介绍,并且在TIMIT语音数据库上进行了实验。实验结果表明,LSTM型递归神经网络在语音识别上的可以取得较好的识别效果
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.