文件名称:
Generalization evaluation of numerical observers.pdf
开发工具:
文件大小: 192kb
下载次数: 0
上传时间: 2019-10-14
详细说明:numerical observers比较好的一篇文献,比较好的一篇文献Figure 2(left)shows the calculated A, by the different generalize better when the test images are reconstructed in a
methods. These results suggest that both CSVM and CHO can
different way from that of training images. Therefore, the
accurately generalize to unseen images, provided that these CSVM method could be more adequate for evaluating
images are produced in exactly the same way as those used in c
reconstructed images for which no human observer data are
training.
available
Comparison 2.
Generalization from one broad class of
images to another
IV. REFERENCES
In this comparison, we studied a form of generalization [1] H.H. Barrett and K Myers, Foundations of Image Science, New York
that is perhaps most representative of the practical use of a
Wiley, 2003, Chap. 14
numerical observer. We trained both CSVM and CHO on a [2] K.J. Myers and HH. Barrett, J. Opt. Soc. Am. A, vol 4, no 12,pp
2447-2457,1987
broad range of images, and tested them on a different, but [3] J. Yao and H H. Barrctt. Proc. SPIE, 1786, pp 161-168, 1992
equally broad, set of images. Specifically, we trained both [4] S.D. Wollenweber, et al. Proc. IEEE Nucl. Sci. Symp., vol 3, pp 2090
numerical observers using all the filter FWhm values and
2094,1998.
one-iteration OSEM, and then tested the observers using all [5 H.C. Gifford at al. IEEE Trans. Nucl. Sci., vol. 46. no. 4,, pp. 1032
the filter fWhm valucs and fivc-itcration OSem
1037,1999
The results of this experiment are shown in Figure 2 [6] K abbey and H.H.Barrett,J.Opt.Soc.Am. A, vol 18,no. 3, pp 473
4882001
(right). In this situation, the Cho performed relatively poorly, [7] M. V. Narayanan et al. IEEE Trans. Nucl. Sci. vol. 49, no 5, pp 2355
failing to match either the shape or amplitude of the human
2360,2002
observer curves, while the CSvM was able to produce [8] J. Oldan et al., IEEE Trans. Nuc. Sci, vol. 51, pp. 733-741, 2004
[9 P. Bonetto et al., IEEE Trans. Nucl. Sci, voL 47, no 4, pp. 1567-1572
reasonably accurate predictions
2000
In all experiment, the parameters of the CHo and CSVM [10] T K Narayan and G T Herman, J. Opt. SoC. Am. A, vol. 16, no. 3
were optimized to minimize generalization error measured
1999
using five-fold cross validation based on the training images [I N Cristianini and J. Shawe-Taylor, Cambridge: Cambridge Univ Press,
only
[12]MN. Wernick, J. Opt. Soc. Am. A, vol 8, pp 1874-1880, 1991
3 J.G. Brankov ct al., IEEE Nucl Sci. Symp. Mcd Imag. Conf, vol 4
IIL CONCLUSION
pp.2526-2529,2003
L4」 ROCKIT,
In this paper we developed and evaluated a NO using a
http://xray.bsd.uchicago.edu/krl/krlRocSoftwaReindexhtm
channelized SVM. Our results demonstrate that while both [15] I.M. Iludson and R.S. Larkin, IEEE Trans. Med Imaging, vol 4, pp
CHO and CSVM can generalize well when training and test [16] Narayanan, M.V. et al. voL 49, no 5, pp.2355-2360,2002
images are both reconstructed in the same way, the csvm can
5 ite rati
5 ite ration
95
0.95
0.9
0.85
085
0.8
0.75
CSVM
CHO
07
0.7
HO
0.65
0.65
5
FWHM (pixels)
FWHM (pi eels)
1, l Figure 2. Calculated area under the ROC curve for HO, CSVM and CHO, where error bars represent plus/minus one standard deviation. Left: Comparison
1698
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.