文件名称:
论文笔记 - ATOM: Accurate Tracking by Overlap Maximization.pdf
开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2019-10-13
详细说明:论文笔记 - ATOM: Accurate Tracking by Overlap Maximization2019/10/13
机器人
针对服务机器人系统对环境感知问题,对人和其他目标的状态预测
视频监控
2819
obiect
农险管慧云再
2019/10/13
虚拟现实人机交互
7
视频剪辑
加班加点扣掉
吴秀波
总算是快弄完了,P了三天三夜
应该是不仔细找都看不出来了
真的惨,怎么刚入职就碰上这种事
唉,我尽力了
P了二天三夜
2019年1月31日01:46
如果楼上学会目
國■以
标跟踪
2019/10/13
Bilibili智能防挡弹幕
00:05■结束
原你坤/全民制作人们大冢好
一个人生
不尽兴?传送门https://www.bilibili.com/video/av61335515?from=search&seid=18435316748105582121
9
02
难点
◇
令
10
2019/10/13
尺度
KCF Tracker
FPS c2
11
模糊
KCF Tracker
FPS: 388
12
2019/10/13
姿态
A ROI sector
消失
KCF Tracker
FPS: 108
14
2019/10/13
遮挡
KCF Rocket
15
03
算法
◇
令
16
2019/10/13
目标跟踪图谱:https://github.com/horwood/benchmarkresults./tree/master
denotes VOT baseline experiment
ccor為20102017
denotes VoT rea/lime experirmerIl
SRDCE2015园4
FGF况07E
DeOr SRDCF A: 2015 2
ATOM
SPD-Fgcor
CsRECE多2:7
OPR
RI-MDNet
DAT
MDNetA 20151 cNNl-svI
KCF
20143
MCPF
CN加158
ROLO
CSK
K二FMr
GOTUJRN
LE MOSS
SiamAk
DSST
DaSiatnRPN乡 StelInRPN
Learno?
SAMF 2
BAcE
Siamese Cende RPN
MCCE
DsNet
OTB2013
OT82015
Srmeu
ciompoerc43c172
EAST
VOT
wa015
wo2016
-2017
LSYC D
→
ube boundiegBoHD
rclated datasct Benchmark
Temrlecolrr126
NUS P
Tracking:
L234V
LTW: LnDlerm acorn n the wHl
ATOM: Accurate Tracking by Overlap Maximization
论文链接:htps:/ xiv.org/pdt/181107628pdt
源码链接:htts:/github.com/visionmlpytracking
论文作者: Martin danelljan, Goutam bhat(cVL, Linkoping∪ nIversity, Sweden)等人
论文出处:CvPR2019
该文章再一次将单目标跟踪的精确度拔高到了一个新的高度。本文的主要思想是通过
oU-Net来优化网络预测的 bounding box,提高定位精确度;并通过基于共轭梯度的策略来训
练分类网络,提高分类准确率。通过二者的结合,ATOM在四个主要的跟踪数据集上达到了
新的高度。
18
2019/10/13
摘要
While recent years have
witnessed astonishing improvements in在近些年,单目标跟踪算法大多集中在开发
visual tracking robustness, the
advancements in tracking accuracy
比较鲁棒的分类器方面,在 bounding boxl的
have been limited. As
focus has
been directed towards the
refine没有太多进展,大多是通过muti-Sca|e
development of powerful classifiers
the prob1mn, ccurate target state的输入,来找到一个响应值最高的输入,作
overlooked. In fact, most trackers
reot, to a simple multi- scale search为 ounding box的 scale。但是,单目标跟踪
in order to estimate the target
bounding box. We argue that this
的物体有些是非刚体,随着物体姿态的变化
approach is fundamentally limited
since target estimation is a comp!lr物休会发生长宽比的改变,因此,单纯计算
task, requiring high-level knowledge
about the object
sca|e并不能得到一个很好的 bounding box.
19
对比
comparison of our approach with state-of-the-art trackers
UPDT, based on correlation filters, lacks an explicit target
state estimation component, performing a brute-force multi
cale search instead. C
ntly, it does not handle
aspect-ratio changes, which can lead to tracking failure
(second row). DaSiamRPN employs a bounding box
regression strategy to estimate the target state, but still
struggles in cases of out-of-plane rotation, deformation, etc
Our approach ATOM, employing an overlap prediction
network, successfully handles these challenges and provides
ATOM
DasiamRPl
accurate bounding box predictions
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.