文件名称:
germanium-p-channel-qwfet-cmos-paper.pdf
开发工具:
文件大小: 728kb
下载次数: 0
上传时间: 2019-10-13
详细说明:锗(旧译作鈤 )是一种化学元素,它的化学符号是Ge,原子序数是32,原子量72.64。在化学元素周期表中位于第4周期、第IVA族。锗单质是一种灰白色准金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近,不溶于水、盐酸、稀苛性碱溶液,溶于王水、浓硝酸或硫酸,具有两性,故溶于熔融的碱、过氧化碱、碱金属硝酸盐或碳酸盐,在空气中较稳定,在自然界中,锗共有五种同位素:70,72,73,74,76,在700℃以上与氧作用生成GeO2,在1000℃以上与氢作用,细粉锗能在氯或溴中燃烧,锗是优良半导体,可作高频率电流的检波和交流电的整流用,此外,可用于红外光材料、精密仪器、催化剂。锗的化合物可用以制造荧2500
[5]
MBE 1.3%
S/D
2000
口[6] Strained
A【7]GeQW
Contact
TiN Gate
Contact
Nitride LinerILD
1500
RTCVD.3%
Strained Ge Qw
Strained Undoped Ge QW Channel
TiN Gate
1000
[This Work]
二二二=二二二二二
RSD
2% Strained
Phos junction isolation
500 FInSb QW [3]
RSD
Strained Si [2]
Si Ge- Buffer
dop
d
OW
100nm
Strain
ed Ur
0E+002E+124E+126.E+128.E+12
Fig 5: Cross sectional tEM image of a fullv
Si3Ge ,Bottom Barrier
Hole Density(cm)
processed ge qwfet device highlighting
Fig 4: Hall mobility vs density for 300mm the strained Ge QW channel, tin gate
RTCVD grown 1.3% strained Ge Qw
electrode, self aligned implanted s/D, W/T
Fig 6: Cross sectional TEM image highlighting
the gate stack and source/drain of a ge
to MBE grown Ge QW litcrature data(5-7I, layer that suppresses parallel conduction in QWFET incorporating a in-situ b doped Si
and mobility gains over the Insb Qw[3
the sige buffer
Ge. raised source/drain (rsd)which allows
and strained silicon 2
for reduction/removal of the S/D implantation
800
2E+19
0.2
Germanium
Hfo
TiN Gate
700
0
1E+19
u
-0.2
HfO
-CO EDS
40· Ti EDS/2;a
500
t Ge EDS/2
g300
5E+18
-0.68
-O- Hf EDS
sio2 Silicon Cap
20
-SI EDS
.8
(a)
Germanium
100
051015202505101520
02468101214
Depth Along Stack [nm]
Fig8: High resolution cross sectional
Relative Distance [nm
Fig 7: Valence band diagram and hole
TEM image of a high-k metal gate
Fig 9: Energy dispersive X-ray spectroscopy
wavefunction determined using k'"p Poisson
stack with a thin Si cap on a ge
depth profile of the high-k metal gate stack
technique for Ge QWFET for(a)100A Si3 Ge, QWFET. Part of the Si cap is oxidized on Ge shown in Fig 7, indicating the presence
top barrier and (b)10A Si Cap. In both cases,
due to thermal dt during the transistor of both Si and sio2 between the ge and
ns=5x1012 cm(Vcc=0.5V). The thin Si cap
fabrication process.
IIfo2. This confirms that part of the si cap is
confines carriers in the Qw layer.
oxidized due to thermal dt during the
transistor process. Further quantification
3.0E06
Dit= 9.0x101 cm-2/ev
was performed using electrical
T
HFO2
=20A
measurements as shown in Figs. 9-11
2.5E-06
300
635°cDt
700°cDt
2.0E-06
250
A
S02=6
Sio2=10A
9A
1.5E-06 F Silicon Cap
c200
Thickness
1.0E-06
6A
50 Dit= 1.8x1011 cm-2/eV
150
9A
No Silicon Cap
11A
50E-07
s100
14A
G
f=1 MHz
0.0E+005.0E+1210E+1315E+132.0E+13
0.0E+00
Hole density [cm 1
1.5:1.0-0.50.00.51.01.5
Vg m
Figl1: Mobility ys carrier density for Ge 2 0
Ig 10 Full cv characteristics of Ge mosfet MOSFeT reference with different Si cap
81012141618202224
reference showing inversion toXe reduction
thickness Mobility improves with
TOXE [A]
with Si cap thickness scaling. Since the Si cap
reducing Si cap thickness due to reduction
Fig 12: Ge mosFet carrier mobility at
only contributes to inversion capacitance, the
in carrier spill-out Mobility degrades
5x10 vs toXE for 635C
Sio thickness(T sioz)on the silicon cap can be severely without Si cap due to high Dit.
(circle)and 700C(triangle) process Dt.
extracted from the accumulation capacitance In
In both cases TOXE is scaled via Si cap
this example, TSio: =6A for all cases due to
thickness reduction Lower dt enables
constant thermal process Dt.
ToXE scaling down to 14,5A without
nobility loss
duction in 1
3.0E-06
Strained Ge QW
1200
Solid= Experiment Open Simulation
800
▲←1.3% Strained
2.5E-06
TOXE= 14.5A
700
Undoped
1000
Ge QW
600
(THIS WORK
R20E06
1.3% Strained Ge
QW (Undoped)
e500
L1.5E-06
Relaxed ge
Ge MOSFET
U 1.0E-06 F TOXE= 14.5A
4x
c300
MOSFET
400
Relaxed Ge
20F1
MOSFET (1e18)
Literature
200
100
Data to Date
10 kHZ to 1 MHZ
Strained Silicon [2
8101214161820222426
0
0.0E+0050E+121.0E+131.5E+13
TOXE [A]
Vg
(V)
Hole Density(cm)
Fig15: Mobility vs TOXE at n,=5x10
Fig13: Capacitance vs gate voltage at f=1
Fig14: Mobility vs ns for the strained ge
cm- for the ge mosfet reference and
0.3.0., and 0. 01 MHz for both the ge
QWFET and relaxed Ge MOSFEt
the ge Qwfet. The ge owfet
MOSFET reference device and strained Ge
reference, with TOXE= 145A.The
achieves the highest mobility(770
QWFET using the same Si cap t high-k
experimental data match 6-band k*p
cm/V*s)at the thinnest TOXE (145A)
process. Both devices exhibit minimal CV
simulations assuming Dit and surface
compared to the best relaxed 8 and
dispersion at ToXE=145A.
roughness matched to state-of-the-art si
strained y ge literature data to date.
3500
At n,=5x10cm, the QwFEt exhibits
1.E03
1.3% Strained
3000
4x gain over state-of-the-art strained Si 2
●鲁●●
No Phos
Undoped Ge QW
3000
1.E-04
Junction
之2500
(TOXE=14.5A)
1.3%Strained
Undoped Ge QW
1:E05
§200
1500
ds=05
072
e1E06
1500
With Phos
1E-07
Functio
1000
600
1E08
500
vds=-0.05v
T=295K to 20K
5x1012
1E-09
cm-2
-0.5-0.25
0
0.250.5
0.0E+0050E+121.0E+131.5E+13
Relaxed Ge
g
073
Hole Density(cm)
MOSFET (le18
Figl8: Drain current vs vg for a ge
150
Fig 16: Mobility vs hole carrier density
0.05V(open circle)and-05V(solid
QWFET with Lgate=100nm, at Vds
200
300
in a strained Ge Qw Fet for
Temperature [K]
temperatures ranging(from bottom)
circle). The device exhibits a healthy
295K,250K,200K,150K,100K,50K,
Fig 17: Mobility vs T for the undoped ge
subthreshold slope ( ss=97 mV/FC
and 20K. The mobility improves 3x
QWFET and for the relaxed doped Ge
enabled by the phosphorus junction layer,
MOSFET. The data from the QwFet
when cooled to t=20 K
which suppresses parallel conduction
system indicates no saturation of mobility
through the siGe buffer.
500
down to T=20 K, indicating minimal
a MD, 2e15/1keV(NO RSD)
1.E04
450
◆NoMD2e15/1
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.