开发工具:
文件大小: 3mb
下载次数: 0
上传时间: 2019-10-09
详细说明:使用fsl进行MRI脑图像分析,安装教程,fsl Course,bet去除颅骨,fslroi选取感兴趣区域,FAST分割+偏置场校正,Partial Volume Segmentation 图像分割结果,fslstats 统计,FIRST 皮层下结构分割及统计分析,Vertex Analysis,Volumetric Analysis,信息汇总。 o FSLeyes
FSLeyes File overlay View Settings Tools
structura
Brightness
三是R=F
Greyscale
回回回目回目+Q
oeo wangwang-VirtualBox -/Fsl/seg_struc/fast
structural brain TT rot nti. gz sub2 tI. ntL. gz
s wang wang- virtualBox in /fsl/seg_struc/fast [10: 39: 86]
totaL 18M
drwxr-xr-x 2 wang wang 4.OK
310:37
drwxr-xr-x 9 wang wang 4. OK
362019
.rwxr-xr-x 1 wangwang 2.IN
21 2017 structuraL brain 7T. ntL. gz
rwxr-xr-x 1 wang wang 125K
21 2017 structuraL brain 7T rot nt1 9z
-rwxr-xr-x 1 wang wang 13M
21 2017 structuraL ntt
rwxr-xr-x 1 wang wang 1. 7M
21 2017 sub2_t1.nit. gz
rwxr-xr-x 1 wang wang 1. 7M 7 21 2017 sub2_t2.nit.gz
wang a wang virtuaLBox in -/fsL/seg struc/fast [18: 39: 88]
s bet structural nit structural_brain
wang a wang- Vir tua LBox in -/fsl/seg_struc/fast [10: 39: 30]
otal 20M
drwxr→xr-x2 wang wang
drwxr-xr-x 9 wangwang 4. OK
32619
rwxr-xr-x 1 wangwang 2. 1M
21 2017 structuraL brain 7T. nit. 92
rwxr-xr-x 1 wang wang 125K
21 2017 structural brain_7T- rot ntt. gz
fw·rw·『
ang wang 2. 2M
30 10: 39 structuraL brain.ntt.9z
rwx.xr-x 1
wang wang 13M
21 2017 structuraL ntt
rwxr-xr-x 1 wang wang 1. 7M
21 2017 sub2_tinti.gz
rwxr-xr-x 1 wangwang 1. 7M
1 2017 sub2 t2 nii. gz
Overlay list
去除颅骨后的大脑图层
wang wang- Virtua LBox in -/fsl/seg_struc/fast [10: 39: 32]
structural brain
s fsleyes structural, nii structural brain
strucural
整个大脑的图层(含颅骨)
wang g wang- virtua LBox in -/fsl/seg_struc/fast [10: 40: 28]C:
2 gunzip structural-bralnnttgz
wang a wang-virtualBox in -/fsl/seg_ struc/fast [10: 40: 38]
22 fslr选取感兴趣区域
也可以使用slri选取感兴趣的区域,再加载进 Emsley
fslroi structural brain structural brain roi 0 175 0 185 100 5
o。 O FSLe
FSLeyes File overlay View Settings Tools
Brightness.
a|l回回目巴Q—
Overlay list
Locat on
Coordinates: Scanner anatomical Voxel locati
structural brain rol
structural brain roi
7653788
82
82812640
2189268
structural
同02
18281102}64
volume
23FAST分割+偏置场校正
示例中还有输入Fastωu命令,进行偏置场校正及分割,设置同官网,进行校正。输出3类,输出选项全都勾上,然后 Iteration共10次
Use the GUI(Fast [or Fast _gui on a Mac])and turn on the Estimated bias fieldbutton(which saves a copy of the bias field) and Restored input button(which corrects the original image with
the calculated bias field ). For both images also open the Advanced Options tab and change the Number of iterations for bias field removal to 10 to account for the strong bias fields in both
cases
此时并没有配准到MN152的空间
关于为何选择输出3类: Now choose the Number of classes to be segmented. Normally you will want3( Grey Matter, White Matter and CSF). However, if there is very poor grey/ white contrast
you may want to reduce this to 2; alternatively, if there are strong lesions showing up as a fourth class, you may want to increase this. Also, if you are segmenting T2-weighted images, you may
need to select 4 classes so that dark non-brain matter is processed correctly(this is not a problem with T1-weighted as CSF and dark non-brain matter look similar
Ps:下图中选项中是选择6类,注意改成3类
060 FAST- FMRIB's Automated Segmentation Tool-V
● o Fast GUI
Input
structural brain roi_pve 2-cm red-yellow -dr 0.5 1&
mber of input channels1彐
[1]5610
Input image/home/wang/Fsl/seg_struc/f ast/structural el
wang wang-virtua LBox in "/fsl/seg_struc/fast [15: 38: 02
s Gtk-Message: 15: 38: 03, 356: Failed to load module "over lay-scrollbar
Image type T1-weighted
Gtk-Message: 15: 38:. 358: Failed to load module "atk-bridge'
utput
Gtk-Message: 15: 38: 03, 358: Failed to load module"unity-gtk-module
Gtk-Message: 15: 38: 03. 361: Failed to Load module "canberra-gtk-module"
Output image(s)basename/home/wang/Fsl/seg_struc/fast/structural.
unrecognized arguments: structural brain roi restore nii. gz structural br
pve o-cm green -dr 0.5 1 structural brain roi pve 1-cm blue-lightblue
卜 lumber of classes6
1 structural brain roi pve 2-cm red-yellow -dr 0.5 1
Output images:
Binary segmentation: Also output one image per class
FSLeves version 0.30. 1
Partial volume maps Restored input Estimated Bias field
Usage: fsleyes [options] file [displayopts] file [displayopts]
v Advanced options
Advanced
1]+5616exit1
fsleyes structural brain roi restore nii. gz struc
Main MRF parameter 0. 1 e
atn roL_pve-c門
Number of iterations for bias field removal 10 e
wang wang-Virtua LBox in "/fsl/seg_ struc/fast [15: 38: 03]
Fast guI
Bias field smoothing (FWHM in mm)20. 04
Use a-priori probability maps for initialisation u
Standard to Input FLIRT transfor m//usr/local/fsl/etc/flirtsch/ida
Use file of initial tissue-type means
G
XI
24 Partial Volume Segmentation图像分割结果
fsleyes structural brain roi restore
structural brain roi pve 0-cm green -dr 0.5 1
structural brain roi pve 1 -cm blue-lightblue -dr 0.5 1
structural brain roi_pve_2-cm red-yellow -dr 0.5 1&
下图就是图像分割结果,不同颜色分别代表GM,WM,CSF;灰质,白质,脑脊液。
脑脊液(绿色pVe0)
灰质(蓝色pve1)
·白质(红黄pve2)
000 FSLeyes
FSLeyes File Overlay View Settings Tools
oO
Structurs_brain_oi pve
Opacity
Brightness
IContrast
厂==
Red-Yellow
B回目目+Q
↓
oeo wang- VirtualBox:-/fsl/seg_struc/fast
structural brain roi nii
structuraL brain rot seg. nit. gz
t pve 0.ntt,g
structural, ni
ucturaL brain rot pve 1.ntt.g
structural brain rot pve 2.ntt. gz
.ntL.9
wang g wang- lBox in -/fsl/seg_struc/fast [15: 32: 33]
s fsleyes structural brain rot
restore ntt. g:
structural brain roi pve o-cm green dr 0.51
structural brain roi_ pve 1-cm bluelightblue
tructural brain rot pve 2-cm red-yellow -dr 0.5 1
[1]5496
wang e wang- Virtua LBox in - /fsl/seg_struc/fast [15: 32: 37]
OveRlay list
Gtk-Message: 15
38. 771: Failed to load module overlay-scrollbar
Gtk-Message: 15:32:38.772: Falled to load module"atk-brtdge
巴 structural brain rol pve2
tk.Message: 15:32:38
Failed to load module "unity.gtkmodule
a Structural brain rolpve. 2
eloo structural, brain_rol_pve_1
Gtk-Message: 15: 32: 38.776: Failed to load module "canberra-gtk-module
WARNING
annotations, py 254: draw
Attempt to call an undefi structuralbrain_roi_pve_1
图 o structural_brain_rol_pve_o
ned function glutstrokewtdth, check for bool(gLutstrokewidth) before calling
raceback (most recent call last):
structural brain_ roi pve_0
File"/usr/local/fsl/fslpython/envs/fslpython/lib/python. 7/site-packages/fsl
79912]:00
structural brain ro restoro
eyes/gU/annotations. py", line 251, in draw
79912}13335842895507812
各种组织分割的结果如下
*pVe_*文件表示每类的概率,没有进行二值化
*seg*文件表示每类分割结果,进行过二值化
bias文作为偏置场。
25 fsIstats统计
第一个数字表示整个图像上GM(pve1是灰质)的平均体素,就是个百分比,第二个是整张图体素数日,第三个数字是图像的总体积(单位:立方毫米),忽略了所有的零体素(就是脑袋外的体素不算
在内),将第一和第三个数字相乘可以得到GM的总体积。
wang a wang- Vir tua LBox in w/fsl/seg struc/fast [16: 19: 11]
fslstats structural brain pve 1 -M-V
.676181351749351749.0000
wang g wang-Virtua LBox in -/fsl/seg_struc/fast [16: 19: 22
fslstats structural brain pve 2-M-V
710148423795423795.000000
ang a wang-virtualBox in "/fsl/seg. struc/fast [16: 20: 33]
fslstats structural brain pve 3
683672406342466342.000000
wang wang-virtuaLBox in "/fsl/seg_struc/fast [16: 21: 29]
fslstats structural brain pve 6-M-V
.723275222486222480.00000
wang a wang-VirtuaLBox in */fsl/seg_struc/fast [16: 21: 34]
fslstats structural brain pve
69790143411434011.000009
wang g wang-VirtuaLBox in -/fsl/seg_struc/fast [16: 21: 40]
fslstats structural brain pve 5-M-V
70133130905360905.000000
26FRST皮层下结构分割及统计分析
首先,进入~/fs1/ seg struc/ first目录
run first all -i con0047 brain -b-s L_Hipp, L Amyg
-o con 0047 -a con0047 brain to std sub. mat
-a指定了仿射配准的短阵,这个步骤也可以自动完成-s指定要分割的部分,此处是 L Hipp,L_Amyg
将图像 congo47 brain to std sub,ni.gz与“1mm标准空间模板图像一起加载到 FSLeyes中。查看皮层下结构的对齐方式两者都是MN152 space,所以非常接近。
FSLeyes File Overlay view SettingsTools
cno047 brain
ortho view1 Take screenshot
Crewel
Save animated GIF
show command line for scene
Apply command line arguments
Alt+N
Link display settin
Alt+s
Reset display
Alt+R
Centre cursor
Alt+P
Centre cursor at(0, 0, 0)
Alt+o
Show/hide labels
Alt+L
v show/hide location cursor
Alt+C
show/hide x (sagittal) canvas
Alt+x
Y show/hide Y(coronal) canvas
Alt+Y
Show/hide Z (axial) ca
Alt+z
4 Overlay list
Ctrl+Alt+1
Location pane
Ctrl+Alt+2
Overlay information
Ctrl+Alt+3
Overlay display panel
Ctrl+Alt+4
View settings p
Ctrl+Alt+5
ˇ Atlas panel
ctrl+Alt+6
v Ortho toolbar
Ctrl+Alt+8
Lookup tables
p
cluster browser
Melodic iC classification
Remove all panel
Ctrl+Alt+x
Close
ctrl+v
Location
TAtas in formation Atlas search Atlas management
Coordinates: Scanner anatomical voxel locati
Bloo mnvlabevall
相10.625062
joocon0o47-brain, to_std_sub
OMars Parietal connec.y-based parcellation
The selected overlay does not appear to be in
B Mars TPJ connectiVity based parcellation
MNI152 space atlas in Formation might not
30.63761
n00d7 brain
E MN Structural Atlas
be accurate!
2320364
151
O Neubert ventral Fro. based parcellation
MNI Structural Atlas(show/Hide)
volume
4.0%Parietal Lobe(Show /Hide
a OxFord Thalamic Co,.wty Probability Atlas
BOxford-lmanova Stri... Atlas 3 sub-regions
B Oxford-lmanove surl... Atlas 7 sub-regions
B Oxford-Imanova Striatal Structural Atlas
Osallet Dorsal Frontal. y-based parcellation
B Subthalamic Nucleus Atlas
后面对于分割不满意,还可以 Boundary corrected segmentation output,将边界重新进行调整。
Vertex Analysis
照样是跟着教程来,换了一个文件夹,在fs1/ seg struc/ first/ shapeAnalysis下面运行的。
1.百先;使用 concat bvars把顶点信息文件 bvars整合成一个,注意此时整合的顺序和后序 design matrix的要保持一致
2.接着,打开Gm,按照教程上的进行配置
3. Create a design matrix(Don 't worry if you don't fully understand this part, we will cover this in more detail later in the course). The subject order should match the order in which the, bvars
were combined in the concat bvars call. The design matrix is most easily created using FSL's GIm tool (a single column file). To do this, start the Glm GUI (Glm gui on mac). First, choose
the Higher-level/non-timeseries design option from the top pull down menu in the small window. Next, set the inputs option to be 8(the number of subjects we have in this example)
4. In the bigger window(of the Glm GUI)set the values of the Ev (the numbers in the second column to be -1 for the first five entries (our five controls) and +1 for the next three entries(our
three patients ) This will allow us probe the difference between groups. Leave the group column as all ones. Once
done this, go to the Contrasts and F-tests tab. Rename the t-
contrast(C1)to group difference, but leave the value set for EV1 as 1. We also need to add an F-test. Change the number in the F-tests box to 1, and then highlight the button on the right
hand side(under F1)to select an F-test that operates on the single t-contrast This F-test will be the main contrast of interest for our vertex analysis as it allows us to test for differences in
either direction
5. When this is all set up correctly, save everything using the Save button in the smaller GIm window, Choose the current directory and use the name design con1 dis2(as we will assume
this is the name used below, although for your own studies you can use any name of your choice). Now exit the Glm GUI
6.然后,使用 randomise进行统计检验
7.最后,用 fsleyes可视化。
全部命令如下:
concat bvars all bvars *L Hipp*bvars
我的理解是,该步骤把不同 subject的 bvars整合出来的文件,使用-- useRecon MNT参数,重构№N工空间。 Reconstructs the me shes in MNI space( native space of the model)
first _utils --usebvars --vertexAnalysis -i all bvars -o diff con1 dis2_L Hipp mni -d design con1 dis2. mat --useReconMNI
#在重构好的空间里,进行统计检验
randomise -i diff con1 dis2 L Hipp mninii. gz
m diff con1 dis2 L Hipp mni mask.nii. gz
-o con1 dis2_ L_Hipp rand -d design con1 dis2.mat
t design con1 dis2. con -f design con1 dis2. fts
fonly -D-F 3
#可视化有差异的地方(都在MNI152空间)
fsleyes -stdlmm con1 dis2 L Hipp rand cluster corrp fstat1 -cm red-yellow -dr 0.95 1
最后可视化,橘黄色部分应该就是存在差异的地方
Ortho view 1
x 3D View 2
MNI152 T1 1mm
Opacity
iorns
30/4D volume
Contrast
B回⊙回m目甲+Q
zoom
10
回+Q0
Overlay list
网 Location
Coordinates: MNI152
Voxel location
a docent_ dis2__Hipp,rand_cluster.corrp.fstatt
con1_disa_ L_Hipp_ra
3379261
1:
Overlay list
国 Location
●MN52T1mm
2175005
108
MNI152 T1 1mm
24108565028
Coordinates: MNi152
3-157394
con1 dis2 L Hipp rand cluster corrp fstatt
339261
124
Volume
③MN152T11mm
-1750005
1574394
当然, User Guide里面也有相似的内容,也跑了一下,比较坑的是, User Guide内容蛟老,里面有张图是用FsLⅵew可视化的,现在该工具已经弃用,另一张图按照示例代码(见下方),对应着改
了下文件,也没有做出来有不同颜色和箭头( User Guide箭头要另做)的样子。做出来的图如下
User Guide链接;htps;/「sl.mrib.ox.ac.uk/s「 slwiki/FIRST/ Userguide
#此处的不同之处在于,是在原来图像的空间进行重构
#--useReconNative Reconstructs the meshes in the native space of the image. For vertex-wise stats need to also use --userigidAlign
#--useRigidAlign Uses a 6 Degrees of Freedom transformation to remove pose from the meshes (see --useScale if you wish to remove size as well). All
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.