开发工具:
文件大小: 896kb
下载次数: 0
上传时间: 2019-10-05
详细说明:介绍了机器学习中线性回归、分类等基本概念,包含了欠饱和与过饱和的介绍,详细介绍了梯度下降的方法,是全英文版的。Tony Jebara, Columbia University
Polynomial Basis Functions
.To fit a P'th order polynomial function to multivariate data
concatenate columns of all monomials up to power p
E.g. 2 dimensional data and 2nd order polynomial(quadratic)
Max. Throughpu
C
)x1(2)x1()1(1)1()-1(2)1(2)x(2)
r()x(2)x()()(1x2)x(2)1(2)
1a()x(2)x()-s()x()-x(2)x(2)x(2)
Tony Jebara, Columbia University
Sinusoidal basis functions
15
.More generally, we don't just have to deal
With polynomials, use any set of basis fn's: 0.5
P
0d(x)+0
1p「p
5
0
. These are generally called Additive Models
Regression adds linear combinations of the basis fn's
oFor example: Fourier(sinusoidal), basis
.= coS ke
2k
2k+1
eNote, dont have to be a basis per se usually subset
6×0
+6×a
+0×
0
Tony Jebara, Columbia University
Radial basis functions
o Can act as prototypes of the data itself
X-X
e parameter o= standard deviation
02= covariance
controls how wide bumps are
0.5
what happens if too big/small?
05
10
10
.Also works in multi-dimensions
● Called rbf for short
40
x
40
20
00
Tony Jebara, Columbia University
Radial basis functions
.Each training point leads to a bump function
f(x:0
0. ex
k=1°k
X-Xk
rEuse solution from linear regression: 0=XX Xy
o Can view the data instead as x a big matrix of sizeN X N
exp
exp
exp
20
X= exp
eX
X -X
20
2 X
20
eX
exp-1x-x
2
20
3 X
2
20
For RBFs, X is square and symmetric, so solution is just
Va=0→Xx0=Xy→x0=y→0=xy
Tony Jebara, Columbia University
Evaluating Our Learned Function
.We minimized empirical risk to get 0*K
.How well does f(x; 0*) perform on future data?
oIt should generalize and have low true risk
Rn()=∫P(y1(29)mh
o Can't compute true risk instead use Testing Empirical Risk
.We randomly split data into training and testing portions
N+129N+1)3∴5N+M59N+M
.Find 8* with training data: R
train
N
L(3,f(x,;0
.Evaluate it with testing data: R.10-1)N+M
test
M
LIg,f(a; 0
=N+1
Tony Jebara, Columbia University
Crossvalidation
eTry fitting with different sigma radial basis function widths
eSelect sigma which gives lowest Rtest(0*)
木
LOSS
test
train
underfitting overfitting
Best sigma
. Think of sigma as a measure of the simplicity of the model
.Thinner RBFs are more flexible and complex
Tony Jebara, Columbia University
Regularized risk minimization
eMpirical risk Minimization gave overfitting underfitting
oWe want to add a penalty for using too many theta values
. This gives us the regularized risk
0)=R
regularized
empirical
0+Penalty(0
f(x;))+2l
2M
o Solution for Regularized risk with Least Squares Loss
VR
=0→Vy-X+,
0
8 regularized
2N
0=XX+XXy
Tony Jebara, Columbia University
Regularized risk minimization
Have D=16 features(or P=15 throughout)
eTry minimizing Rreqularized e)to get 0*k with different n
nOte that 2=0 give back Empirical Risk Minimization
lambda=1. 0e+06
mbda=1.0e+04
lambda=1.0e+02
lambda=1, 0e+00
lambda=1. 0e-02
lambda=1. 0e-04
-2
2
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.