文件名称:
Commutative Algebra with a View Toward Algebraic Geometry(GTM 150)
开发工具:
文件大小: 32mb
下载次数: 0
上传时间: 2019-09-07
详细说明:在抽象代数中,交换代数旨在探讨交换环及其理想,以及交换环上的模Contents
Introduction
for the bes
r
2
requisites
6
a First Cot
ourse
howled e
0 Elementary Definitions
11
0. 1 Ringy and Ides
0.2 Unique Factorization
0 3 Modules
Basic constructions
19
1 Roots of c
tative Algebra
21
1.1 Number T
21
1.2 Algebraic Curves and Function Theory
1 8 Invariant Th
1.4 The Basis Theorem
1.4.1 Finite generation of invariants
Contents
1.6 Algebra and Geometry: The Nullstellensatz
1. 7 Geometric Invariant Th
1. 8 Projective Varieties
1.9 Hilbert Functions and polynomials
1.10 Free Resolutions and the Syzygy Theorem
44
111 Exercises
Noetherian Rings and Modules
An Analysis of Hilberts Finiteness Argument
Some rings of invariants
alg
Graded Rings and Projective Geometry
Hilb
- Spec, and the Zariski Topolo
2
2⊥ Fracti
22H
2
The construction of primes
24
78
26E
7.graded Ring's and Their Localizations
Partitions of Unity
Glu
Idempotents, Products, and Connected Componente 85
3 Associated Primes and Primary Decomposition
87
3.1 Associated Primes
3.2 Prime avoidance
90
3. 9 Prirnary Decomposition
3.4P
3.5 Primary Decomposition in the Graded Case
99
8.6 Extracting Information from Primary Decomposition
8.7 Why Prirnary Decomposition Is Not Unique
102
3.8
tric Interpretati
f上
3.9 Symbolic Powers and Functions Vanishing to High Order
8.9.1 A Determinantal Example
3.10飞 xerces
General Graded Primary Decompo sition
Primary Decomposition of Monomial Ideals
The Question of Uniqueness
111
Determinantal Ideals
112
Contents ix
Total Quotients
113
Prime Avoidance
113
4 Integral Dependence and the Nullstellensatz
The Cayley-Hamilton Theorem and Nakayama's Lemma 119
4.2 Normal domains and the normalization process
125
3 Normalization in the Analytic C
128
4. 4 Primes in an Integral Extension
129
4.5 The nullstellensatz
4.6Ex
Nakayama Lcmma
135
Projective Modules and Locally Free Modules
Integral Closure of Ideala
normalization
137
Normalization
and
Convexity
Nullstellensatz
Three More proofs of the nullstellensatz
142
5 Filtrations and the Artin-Rees lemma
I45
1 Associated Graded Rings and Module
46
5.2 The Blowup algebra
148
5.3 The Krull Intersection Theorem
150
5. 4 The Tangent Cone
5.5 Exercises
151
6 Flat f
allies
155
6.1 Elementary Examples
6.2 Introduction to Tor
159
6.3 Criteria for flatness
6.4 The local criterion for flatness
166
6.5 The Rees algebra
170
Flat Families of graded modul
175
Embedded first-Order De
175
7 Completions and llensel's Lemma
L79
7.1 ExaMples and Definitions
179
7.2 The Utility of Completions
7.3 Lifting Idempotents
7.4 Cohen Structure Theory and Coefficient Fields
7.5 Basic Properties of Completi
7.6 Maps from Power Series Ring
198
Modules Whose Completions Are Isomorphic
203
all Topology and Cauchy Sequences
204
205
Contents
Coefficient fields
205
Other versions of hensels lemma
206
II Dimension Theory
211
8 Introduction to dimension theory
213
8.1 Axioms for dimension
218
8.2 Other Characterizations of dimension
220
8.2.1 Affine Rings and Noether Normalization
221
8.2.2 Systems of Parameters and Krulls Principal Ideal
Theorem
222
8.2.3 The Degree of the hilbert polynomial
223
9 Fundamental Definitions of Dimension Theory
225
9.1 Dimension Zero
227
9. 2 Exercises
22
10 The Principal idcal Thcorcm and Systcms of
Parameters
231
10.1 Systems of Parameters and Parameter Ideals
234
10.2 Dimension of Base and Fiber
236
10.3 Regular Local Rings
240
10.4 Exercises
,,242
Determinantal Ideals
Hilbert Series of a Graded Module
245
11 Dimension and codimension one
247
11.1 Discrete Valuation Rings
247
11.2 Normal Rings and Serre 's criterion
249
11. 3 Invertible Module
11.4 Unique Factorization of Codimension-One Ideals..... 256
115D
d multiplicity
259
11.6 Multiplicity of Principal Ideals
261
11. Exercises
264
Valuation ri
264
The grothendieck Ring
26
1.2 Dimension and Hilbert-Samuel Polynomials
12. 1 Hilbert-Samuel Functions
272
12.2 Exercises
275
Analytic Spread and the Fiber of a blowup
276
Multiplicities
Hilbert series
280
Contents xi
1 3 The Dimension of Affine rings
281
3.1 Noether Normalization
281
13. 2 The Nullstellensatz
292
13. 3 Finiteness of the Integral Closure
1 3 4 Exercises
296
Quotients by Finite Groups
296
in Polynomial Rings
Dimension in the graded Case
297
Noether Normalization in the Complete Case
298
Products and Reduction to the Diagonal
299
equational Characterization of Systems of
Parameters
301
11 Elimination Theory, Generic Freeness, and the Dimension
of fiberg
808
14.1 Elimination Thcory
303
14.2 Ge
Freeness
307
14 The dimension of fibers
308
14.4 exercises
14
Elimination The
314
15 Grobner Bases
317
ConstriCtive Module Theory
318
Eimination Theory
318
15.1 Mo
als and Te
15.1.1 Hilbert Function and polynomial
820
15. 1.2 Syzygies of Monomial Submodules
922
15.2 Monomial Orders
323
15.8 The Division Algorithm
15.4 Grobner Bases
.881
15.5 Sy zyg
334
15.6 History of Grobner Bases
15. 7 A Propcrty o
crsc Lexicographic Ordcr
338
15.8 Grobner bases
Flat Families
312
15.9 Generic initial ideals
,348
15.9.1 Existence of the generic Initial Ideal
349
15.9.2 The Generic Initial Ideal
165.9.3 The Nature of borel-fixed ide
852
15. 10 Applications
355
15.10.1 Ideal Membership
15.10.2 Hilbert Function and Polynomial
355
15.10.3 Associated Graded Ring
356
15.10.4 Eiiminatio
15. 10.5 Projective Closure and Ideal at Infinity
859
15.10.6 Saturation
860
ntents
15.10. 7 Lifting Homomorphisms
360
15. 10.8 Syzygies and Constructive Module theor
361
15.10.9 What's Left?
363
15.11 Exercises
365
15.12 Appendix: Some Computer Algebra Projects..,.,.375
Project 1. Zero-Dimensional Gorenstein Ideals.... 376
Project 2. Factoring Out a general element from an
sth Syzygy
Project 3. Resolutions over ilypersurfaces
..377
Project 4. Rational Curves of Degree ]+l in Pr
378
Project 5. Regularity of Rational Curve
378
Project 6. Some Monomial Curve Singularities
.379
Project 7. Some Interesting Prime Ideals
379
6 Modules of differentials
16. 1 Computation of Differentiala
16.2 Differentials and the Cotangent Bundle
16. 3 Colimits and Localization
391
16.4 Tangent Vector Fields and Infinitesimal Morphisms... 396
6.5 Differentials and Field Extensions
397
16.6a
for regularity
401
16.7 Smoo thness and generic smoo thess
404
6.8 Appendix: Another Construction of Kahler Differentials
169 Exercises.,·
409
III Homological Methods
417
17 Regular Sequences and the Koszul Complex
419
17.1 Koszul Complexes of lengths 1 and 2
17.2 Koszul Complexes in General
423
17.3 Building the Koszul Complex from Parts
427
432
17.5 The Koszul Complex and the Cotangent Bundle of
Projective Space
435
17. 6 Exer
Free Resolutions of Monomial ideals
439
Conormal Sequence of a Complete Intersection
440
Regular Sequences are Like Sequences of Variables 4 40
Blowup algebra and Normal cone of a regular
quenc
Geometric Contexts of the Koszul complex
412
Contents xiii
18 Depth, Codimension, and Cohen-Macaulay rings
18.1 Depth
447
18.1.1 Depth and the Vanishing ofExt
449
182C
Macau
451
18. 3 Proving Primcncss with Scrrc's Critcrion
457
84F
nd Depth
460
18.5 Some Examples
462
18.6 Exercises
9 Homological Theory of Regular Local Rings
19.1 Projective Dimension and Minimal Resolutions
469
19.2 Global Dimension and the Syzygy Theorem
474
19.3 Depth and Projective Dimension
The Auslander-Buchsbaum Formula
19.4 Stably Frcc Modules and Factoriality of Regular Local
Rings
19.5 Exercises
483
Regular Ri
484
The Auslander-Buchsbaum Formula
Modules over a dedekind dor
484
48
Projective Dimension and Cohen-Macaulay Rings 485
Hilbert Function and Grothendieck Group
The Chern Polynomial
20 Free Resolutions and Fitting Invariant
20. 1 The Uniqueness of Frcc Resolutions ,....,...... 490
20.2 Fitting Ideals
20.3 What Makes a Complex Exact?
20.4 The Hilbert-Burch Theorem
501
20.4.1 Cubic Surfaces and Sextuples of Points in the
Plane
53
20.5 Castelnuovo-Mumford Regularity
20.5. 1 Regularity and Hyperplane Sections
508
20.5.2 Regularity of Generic Initial Ideals..,......509
20.5.3 Historical Notes on Regularity
509
20.6卫 Mercies
510
Fitting Ideals and the Structure of Modules
Projectives of Constant Rank
Castelnuovo-Mumford Regularity
516
21 Duality, Canonical Modules, and Gorenstein Rings
21.1 Duality for Modules of Finite Length
520
21.2 Zero-Dimensional Gorenstein Rings
525
21.3 Canonical Modules and Gorenstein Rings in Higher
Dimension
528
XlV
Contents
21.4 Maximal Cohen-Macaulay Modules
21.5 Modules of Finite Injective Dimension
530
21.6 Uniqueness and (Often) Existence
..534
21.7 Localization and Completion of the Canonical Module . 536
21.8 Complete Intersections and Other Gorenstein Rings.,.. 587
21.9 Duality for Maximal Cohen-Macaulay Modules
538
21.10 Linkage
,,,,,,,.539
21.11 Duality in the Graded Case
545
21 12 Exercises
,546
The Zero-D
onal cas
d duali
546
ner
548
The Canonical module as ideal
Linkage and the Cayley-Bacharach Theorem
552
Appendix 1 Field Theory
555
Al.1 Transcendence Degree
55:
Al.2 Separability
55
Al.3 D-B
559
Al. 3. 1 Exercises
562
ppendix 2 Multilinear algebra
a2.1 Introductie
A2.2 Tensor Pro ducts
567
A2.3 Symmetric and Exterior Algebras
569
a2.3.1 Bases
572
a2.3.2 Exercises
4
A2.4 Coalgebra Structures and Divided Powers
575
A2.4.1 S( F and SMas Modules over One another 582
A2.5 Schur Functors
84
A 2.5.1 Exercises
587
A2.6 Complexes Constructed by Multilinear algebra
58
A2.6. 1 Strands of the Koszul Complex
591
A2 6.2 Exercises
603
Appen dix 3 Homological Algebra
611
A3.1 Introduction
611
Part i: resolutions and derived functors
614
A3. 2 Free and Projective Modules
615
A3.3 Free and Projective Resolutions
617
A3.4 Injective Modules and Resolutions
618
A3. 4.1 Exercises
623
Injective Envelopes
623
Injective Modules over Noetherian Rings
623
A3.5 Basic Constructions with Complexes
a3.5.1 Notation and definitions
626
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.