文件名称:
机器人热仿真利器matlab机器人工具箱演示matlabrobotics-toolbox-demo.pdf
开发工具:
文件大小: 896kb
下载次数: 0
上传时间: 2019-09-01
详细说明:一、rtdemo机器人工具箱演示 2
二、transfermations坐标转换 2
三、Trajectory齐次方程 8
四、forward kinematics 运动学正解 12
四、Animation 动画 18
五、Inverse Kinematics运动学逆解 23
六、 Jacobians雅可比---矩阵与速度 32
七、Inverse Dynamics逆向动力学 45
八、Forward Dynamics正向动力学 52% Homogeneous transformations describe the relationships
between Cartesian
coordinate frames in terms of translation and orientation
% A pure translation of 0.5m in the x direction is represented
by
trans(0.5,0.0,0.0)
ans=
1.0000
0
0
0.5000
1.0000
0
000
010000
0
1.0000
% a rotation of 90degrees about the y axis by
roty(pi/ 2)
ans三
0.0000
1.0000
0
1.0000
0
0
1.0000
0
0.0000
0
0
01.0000
%and a rotation of -90degrees about the Z axis by
rotz(- pi/2)
ans=
0.0000
1.0000
0
0
1.00000.0000
0
0
01.0000
0
1.0000
these may be concatenated by multiplication
t=transl(0.5, 0.0, 0.0 ) roty(pi /2)*rotz(-pi/2)
t
0.00000.00001.000005000
-1.0000
0.0000
0
0
0.0000-1.00000.0000
0
0
1.0000
%
%If this transformation represented the origin of a new
coordinate frame with respect
to the world frame origin(0, 0, 0), that new origin would be
given by
t*[0001]
ans
0.5000
0
1.0000
pause any key to continue
the orientation of the new coordinate frame may be
expressed in terms of
% Euler angles
tr2eul(t)
ans=
0
15708-1.5708
%
%or roll/pitch/yaw angles
tr2rpy(t
ans
1.57080.0000-1.5708
pause any key to continue
%
%It is important to note that tranform multiplication is in
general not
%commutative as shown by the following example
rotx( pi/2 )*rotz(-pi/8
ans
0.92390.3827
0
0
0.00000.0000-1.0000
0.3827092390.0000
0
0
0
1.0000
rotz (- pi/)*rotx (pi/2
ans
0.92390.0000-0.3827
0
0.38270000009239
01.00000.0000
0
1.0000
%%
pause any key to continue
echo off
三、 Trajectory齐次方程
The path will move the robot from its zero angle pose to the
upright (on
%READY) pose
%First create a time vector, completing the motion in 2 seconds
with a
sample interval of 56ms
t=[0:056:2]
pause hit any key to continue
%a polynomial trajectory between the 2 poses is computed
using jtrajo
q= jtrajlqz, gr, t)
pause hit any key to continue
For this particular trajectory most of the motion is done by
joints 2 and 3,
and this can be conveniently plotted using standard matlab
operations
subplot(2, 1, 1)
plot(t, q(:, 2))
title( theta)
xlabel( Time(s));
ylabel joint 2(rad)
subplot(2, 1, 2)
(t,q(:3)
xlabel('time(s))
ylabel(joint 3(rad))
pause hit any key to continue
Fi
File Edit View Insert Tools Desktop Lindow Help
己日边回·日国口回
Theta
1.5
002040608
Time(s)
m-1
1.5
002040608
Time(s)
We can also look at the velocity and acceleration profiles
We could
%differentiate the angle trajectory using diff, but more
accurate results
can be obtained by requesting that jtrajo return angular
velocity and
acceleration as follows
[a, gd, add]= jtrajlqz, gr, t)
which can then be plotted as before
subplot(2, 1, 1)
plot(t, ad(:, 2)
title( velocity)
xlabel( Time (s))
ylabel Joint 2 vel(rad/s)")
subplot(2, 1, 2
plot(t, qd(: 3)
xlabel(Time(s))
ylabel joint 3 vel (rad/s),
pause 2)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.