文件名称:
[1]_Deep_Learning_for_Computer_Vision.pdf 【第1册 - 英文版】
开发工具:
文件大小: 32mb
下载次数: 0
上传时间: 2019-08-16
详细说明:图像视觉领域的深度学习资料,手把手教你搭建自己的神经网络,让你从实践中深入浅出地学习各种经典神经网络知识。亲试不错,分享之!Deep learning for Computer Vision with
Python
Starter Bundle
Dr. Adrian rosebrock
Ist Edition(1. 1.0)
Copyright(c2017AdrianRosebrock,PylmageSearch.com
PUBLISHED BY PYIMAGESEARCH
PYIMAGESEARCH. COM
The contents of this book, unless otherwise indicated, are Copyright(C2017 Adrian Rosebrock
Pyimage Search com. All rights reserved. Books like this are made possible by the time invested by
the authors. If you received this book and did not purchase it, please consider making future books
possiblebybuyingacopyathttps://www.pyimagesearch.com/deep-learning-computer-vision-
python-book/ today
First printing, September 2017
To my father, Joe, my wife, Trish
and the family beagles, Josie and Jemma
Without their constant love and support
this book would not be possible
Contents
1 Introduction
15
1.1 I Studied Deep Learning the Wrong Way... This is the Right Way
15
l2 Who this book is for
1. 2. Just Getting Started in Deep Learning
17
1.2.2 Already a Seasoned Deep Learning Practitioner?
1. 3 Book Organization
17
l 3. Volume #l starter bundle
1. 3. 2 Volume #2 Practitioner bundle
111
11
1.3.3 Volume #3: ImageNet Bundle
18
1.3.4 Need to Upgrade Your Bundle?
1.4 Tools of the Trade: Python, Keras, and Mxnet
18
1. 4.1 What about tensorFlow?
18
1.4.2 Do I Need to know OpenCV?
1.5 Developing Our Own Deep Learning Toolset
1.6 Summary
2 What Is Deep Learning?
21
2.1 A Concise History of Neural Networks and Deep Learning
22
2 Hierarchical Feature Learning
24
2.3 How "DeepIs Deep?
27
2.4 Summary
30
3 Image Fundamentals
31
3.1 Pixels: The Building Blocks of Images
31
3.1.1 Forming an Image From Channels
34
3.2 The Image Coordinate System
34
3.2.1 Images as NumPy Arrays
3.2.2 RGB and BGR Ordering
36
3 Scaling and Aspect Ratios
36
3.4 Summary
38
4 Image Classification Basics
39
4.1 What s Image Classification?
4.1.1 A Note on Terminology
40
4.1.2 The Semantic Gap
41
4.1.3 Challenges
,,,,,,42
4.2 Types of Learning
4.2.1 Supervised Learning
45
4.2.2 Unsupervised Learning
4.2.3 Semi-supervised Learning
47
4.3 The Deep Learning Classification Pipeline
4.3.1 A Shift in mindset
48
4.3.2 Step #1: Gather Your dataset
4.3.3 Step #2 Split Your dataset
4.3. 4 Step #3: Train Your Network
5
4.3.5 Step #4: Evaluate
51
4.3.6 Feature-based Learning versus Deep Learning for Image Classification
51
4.3.7 What Happens When my Predictions Are Incorrect?
52
44Summ。ry
52
5 Datasets for Image Classification
哪量量
53
5 MNIST
53
5.2 Animals: Dogs, Cats, and Pandas
54
5.3 CIFAR-10
55
5.4 SMILES
55
5.5 Kaggle: Dogs vs Cats
56
5.6 Flowers-17
56
5.7 CALTECH-101
57
5.8 Tiny ImageNet 200
57
5.9 Adience
58
5.10 ImageNet
58
5.10.1 What Is ImageNet?
58
5.10.2 mageNet Large Scale visual Recognition Challenge (ILSVRC)
58
5.11 Kaggle: Facial Expression Recognition Challenge
59
5.12 Indoor cvPr
60
5.13 stanford cars
50
5.14 Summary
6 Configuring Your Development Environment
63
6.1 Libraries and Packages
63
6.1.2 Keras
64
6.1.3 Manet
64
6. 1. 4 OpenCv, sclkit-image, scikit-learn and more
64
6.2 Configuring your Development Environment?
64
6.3 Preconfigured virtual Machine
65
6.4 Cloud-based instances
65
6.5 How to Structure Your Projects
6
6.6 Summary
66
7 Your First Image Classifier
67
7. 1 Working with Image Datasets
67
7.1.1 Introducing the Animals Dataset
67
7.1.2 The start to Our Deep Learning Toolkit
7.1.3 A Basic Image Preprocessor
.69
7.1. 4 Building an Image Loader
70
7.2 k-NN: A simple Classifier
72
7.2.1 A Worked k-NN Example
74
7.2.2 k-NN Hyperparameters
75
7. 2.3 mplementing k-NN
,,,,,,75
7.2. 4 k-NN Results
7. 2.5 Pros and cons of k-nn
7. 3 Summary
80
8 Parameterized Learning
81
8.1 An Introduction to linear classificafion
82
8.1.1 Four Components of Parameterized Learning
,,,82
8.1.2 Linear Classification: From Images to Labels
83
8.1.3 Advantages of Parameterized Learning and Linear classification
84
8. 1. 4 A Simple Linear Classifier With Python
85
8.2 The role of loss functions
88
8. 2.1 What Are Loss functions?
,88
8.2.2 Multi-claSS SVM loss
89
8.2.3 CrOSS-entropy Loss and Softmax Classifiers
91
8.3 Summary
94
Optimization Methods and Regularization
95
9.1 Gradient descent
96
The loss landscape and optimization Surface
96
9.1.2 The Gradient in gradient descent
..97
9.1.3 Treat It Like a Convex Problem (Even if it's not)
9.L4 The bias trick
9.1.5 Pseudocode for gradient descent
9.1. 6 mplementing Basic Gradient Descent in Python
9.1.7 Simple Gradient Descent Results
104
9.2 Stochastic Gradient Descent (SGD)
106
9.2.1 Mini-batch SGD
106
9.2.2 mplementing Mini-batch SGD
107
9,2.3 SGD Results,,,,,,,,,,,,
,110
9.3 Extensions to sGD
111
9. 3. Momentum
9.3.2 Nesteroy's Acceleration
.112
9.3.3 Anecdotal recommendations
113
9. 4 Regularization
1l3
9.4.1 What Is Regularization and Why Do We Need It?
113
9.4.2 Updating Our Loss and Weight Update To Include Regularization
115
9.4.3 Types of Regularization Techniques
116
9.4.4 Regularization Applied to Image Classification
17
9.5 Summary
119
10 Neural Network Fundamentals
121
10.1 Neural network Basics
21
10.1.1 Introduction to Neural Networks
122
10.1.2 The Perceptron Algorithm
129
10.1.3 Backpropagation and Multi-layer Networks
137
10.1. 4 Multi-layer Networks with Keras
153
10.1.5 The Four Ingredients in a Neural Network Recipe
163
10.1.6 Weight Initialization
165
10.1./ Constant Initialization
165
10.1, 8 Uniform and normal distributions
165
10.19 Le Cun Uniform and norma
166
10.1.10 Glorot/Xavier Uniform and Normal
166
He et al. /Kaiming/MSRA Uniform and Normal
67
10.1. 12 Differences in Initialization Implementation
167
10.2 Summary
168
1 Convolutional Neural Networks
169
1.1 Understanding convolutions
I.1 Convolutions versus cross-correlation
170
11.1.2 The Big Matrix and Tiny Matrix" Analogy
171
Il13 Kernels
,171
11.1.4 A Hand Computation Example of Convolution
172
11.1.5 mplementing Convolutions with Python
173
11.1.6 The Role of Convolutions in Deep Learning
11.2 CNN Building Blocks
179
11.2.1 Layer types
81
11.2.2 Convolutional layers
18
11.2.3 Activation Layers
186
11.2. 4 Pooling Layers
186
11.2.5 Fully-connected Layers
188
112.6 Batch normalization
,,,,189
1 1.2./Dropout
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.