您好,欢迎光临本网站![请登录][注册会员]  
文件名称: larochelle-metalearning.pdf
  所属分类: 机器学习
  开发工具:
  文件大小: 22mb
  下载次数: 0
  上传时间: 2019-07-29
  提 供 者: xc***
 详细说明:英文版。很好的资源,适合机器学习以及人工智能爱好者。A RESEARCH AGENDA Deep learning successes have required a lot of labeled training data s collecting and labeling such data requires significant human labor practically, is that really how we'll solve Al sCientifically, this means there is a gap with ability of humans to learn, which we should try to understand Alternative solution: exploit other sources of data that are imperfect but plentiful s unlabeled data(unsupervised learning) multimodal data(multimodal learning multidomain data(transfer learning, domain adaptation) 2 3 5 ? D train Dtest People are good at it ⑤咱 Human-level concept learning People are through probabilistic good at it program induction Brenden m. lake.* Ruslan salakhutdinoy, Joshua B. Tenenbaum Machines are getting better at it 可aed Teachable machine ◎X 0aSecurehttps:/teachablemachine.withgoogle.com ☆员0●点 LEARNING O EXAMPLES CONFIDENCE OUTPUT INPUT GIF Sound Speech TRAIN GREEN O EXAMPLES CONFIDENCE TRAIN PURPLE O EXAMPLES CONFIDENCE TRAIN ORANGE Teachable machine ◎X 0aSecurehttps:/teachablemachine.withgoogle.com ☆员0●点 LEARNING O EXAMPLES CONFIDENCE OUTPUT INPUT GIF Sound Speech TRAIN GREEN O EXAMPLES CONFIDENCE TRAIN PURPLE O EXAMPLES CONFIDENCE TRAIN ORANGE A RESEARCH AGENDA Let's attack directly the problem of few-shot learning we want to design a learning algorithm a that outputs a good parameters 0 of a model M,when fed a small dataset Derain(xi, 1i)J2=1 Idea: lets learn that algorithm A, end-to-end this is known as meta-learning or learning to learn RELATED WORK TRANSFER LEARNING Large image datasets(e.g, ImageNet)have been shown to allow training representations that transfer to other problems DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition(20 14) Jeff Donahue, Yangqing ia, Oriol vinyals, Judy Hoffman, Ning zhang, Eric zeng and Trevor darrell CNN Features off-the-shelf: an Astounding Baseline for Recognition(2014 Ali sharif razavian, Hossein azizpour, osephine Sullivan, Stefan Carlsson some have even reported some positive transfer on medical imaging datasets In few-shot learning, We aim at transferring the complete training of the model on new datasets(not just transferring the features or initialization) s ideally there should be no human involved in producing a model for new datasets
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: larochelle-metalearning.pdf
 输入关键字,在本站1000多万海量源码库中尽情搜索: