您好,欢迎光临本网站![请登录][注册会员]  
文件名称: Weighted Finite-State Transducers Important Algorithms
  所属分类: 机器学习
  开发工具:
  文件大小: 9mb
  下载次数: 0
  上传时间: 2019-07-28
  提 供 者: vince******
 详细说明:Weighted Finite-State Transducers Important Algorithms University of Tokyomonoid Is an algebr Semirings () structure that supports a sin associative binary operation and identity element. (wikipedia) WFSTs and WfSt-based operations are underpinned b algebraic objects called semirings Definition A semiring is a system(K, 0, 0, 0, 1)such that (1)(K,e, O)is a commutative monoid with 0 as the identity element for⊕ (2)(K,&, 1) is a monoid with 1 as the idnetity element for 3) distributes over for all a, b K (ab)⑧c=(ac)( ⑧(ab)=(c⑧a)⊕(c⑧b) (4)0 is an annihilator for∞:∈K,a0=0∞a=0 Speech Recognition with Weighted Finite-SLaLe Transducers, Mohri et This has implications for optimization, scarch, and combination algorithms such as determinization, shortest-path, and composition 4 Semirings (ll o a varicty of semirings exist but there arc two that arc of particular interest for NLP and asr applications e log semiring o Isomorphic to the real semiring high numerical stability e The tropical semiring o Convenient for shortest-path algorithms because global path weights are guaranteed to be monotonic non-decreasing, viterbi approximation is fast SEMIRING SET Boolean {0,1} V∧ 000 Probability∪{+∞ × RU{-∞,+∞H1++∞|0 Tropical R+∪{+∞}mm+|+∞0 TABLE 1. Semiring examples. Log is defined by: E N d Finite-state Transducers, Mohriet al =log(e+ y Speech Recognition with Weight Semiring frameworks and algorithms for shortest-distance problems Mohri2002 for more details Semirings(example) Tropical semiring example e Simple, but unintuitive Operation Definitions Trivial Examples ab=atb 5G3=3 ab=min(a, b) 4④27=2 1=0 (3∞4)6=6 0=+0 1∞5=6 (1Q5)(2∞4)=6 3(1冷3④0令0 3∞1今3∞0分>3 6 Transducers and Acceptors Definition a wfst is defined as an8 tuple,T=(∑,△,,l,F,E,入,p) Here 2 represents the finite alphabet of input symbols, A represents the finite output alphabet, Q represents the finite set of states, IcQ the set of initial state, FcQ the set of final states,EsQ×(∑∪{e}) ×(△∪{e)×K× Q a finite set of state-to-state transitions,入:Ⅰ>K the initial weight function, and p: F,k the final weight function mapping f to K Speech Recognition with Weighted Finite-State Transducers, Mohri et A WFSA is simply a WfST where the output labels have been omitted Similarly fsas and fsts lack weights on the arcs or states Basic examples Finite-State Acceptor(FSA) Bob like sushi ramen o Weighted Finite-State Acceptor(WFSA Bob likes sushi/0 3 ramen/0.7 o Finitc-Statc Transducer(FST) : sushi 8 9 10)iy b: Bob I: likes s(6)s-(7)r r:ramen 12 o Weighted Finite-State Transducer (West) : sushi/0.3+8 sh: 10 0 I: like ramen/0. +(12)-+13)m(14)+(15 8 WEST Practice test,fSt。七x七 test·syms test 0 Openfst(www.opeNfsT.org) 012 test h test 1 eh 3 s emacs test fst.txt 4 s emacs test. syms s fstcompile --isymbols=test. syms --osymbols=test. syms test fst.txt fstdraw --isymbols-=test. syms -symbols=test. syms --portrait=true dot -fpdf test pdf t: test test2, fst. txt 0 4 test2.syms o 1 write 3 o 1 right .7 right write 2 s emacs test2. fst. txt s emacs test2. syms .s fstcompile --acceptor=true --isymbols=test2. syms test2. fst.txt Estdraw --portrait=true --acceptor=true --isymbols=test2. symsdot fpdf test2 pdf write/0.3 right/0.7 Important algorithms There exists a wide variety of algorithms that operate on Weighted Finite-State Transducers composition, determinization, minimization, epsilon-removal epsilon-normalization, synchronization, weight pushing, reversal, projcction, shortest-path, connection, closure, concatenation, pruning, re-weighting, union, etc Arguably the most important opcrations are composition determinization, epsilon-removal, weight-Pushing, and minimization Composition () 10 o Fundamental operation for combining related transducers (1o2)(x,y)=m1(x,2)8T2(2,) z∈△* Used to iteratively combine multiple related knowledge sources to produce a single integrated result aa0.6 b503↓2)ab0.5 b ab/03 b:a/05 b/o bb/0.4 3/0.了7 b:b/0.1 a:b/04 3/0.6 a:b/0.2 a:a/04(0,1) a:a02 ab/,01 (0,0) b:a/08 b:a/06 a:b/,24 a:a/0 (3,1) (3,3)/42 (2,1) Fig. 6. Weighted transducers(a)T1 and(b) T2 over the probability semiring.(c) Illustration of composition of T1 and T2, 71012. Some states might, be constructed during the execution of the algorithm that are not co-accessible, e. g,(3, 2). Such states and the related transitions can be removed by a trimming (or connection) algorithm in linear-time
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: