文件名称:
Taylor - Partial Differential Equations II 2ed Springer 2011.pdf.pdf
开发工具:
文件大小: 3mb
下载次数: 0
上传时间: 2019-07-22
详细说明:Taylor - Partial Differential Equations II 2ed Springer 2011 Taylor - Partial Differential Equations II 2ed Springer 2011
Michael E. Taylor
Partial Differential
Equations Il
Qualitative Studies of Linear Equations
Second edition
②$p
ringer
Michael E. Taylor
Department of Mathematics
University of North Carolina
Chapel Hill, NC 27599
USA
met math. unc. edu
ISSN0066-5452
ISBN978-1-44197051-0
e-ISBN978-1-4419-7052-7
DOⅠ10.1007/978-1-44197052-7
Springer New York dordrecht Heidelberg London
Library of Congress Control Number: 2010937758
Mathematics Subject Classification(2010): 35AO1, 35A02, 35J05, 35J25, 35K05, 35L05, 35Q30
35Q35,35S05
C Springer Science+Business Media, LLC 1996, 201
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher(Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights
Printed on acid-free paper
SPringerispartofSpringerScience+businessMedia(www.springer.com)
To my wife and daughter, Jane hawkins
and Diane taylor
Contents
Contents of volumes i and Ill
Preface,........ xiii
7 Pseudodifferential operators
I The Fourier integral representation and symbol classes
2 Schwartz kernels of pseudodifferential operators..........
3 Adjoints and products
4 Elliptic operators and parametrices
25058
5L-estimates
6 Gardings inequality
22
7 Hyperbolic evolution equations
8 egorov’ s theorem
26
9 Microlocal regularity.….…
0
10 Operators on manifolds
33
11 The method of layer potential
36
12 Parametrix for regular elliptic boundary problems......... 47
13 Parametrix for the heat
56
14 The Weyl calculus
67
15 Operators of harmonic oscillator type................ 80
Ref
88
8 Spectral Theory
91
I The spectral theorem
92
2 Self-adjoint differential operato
3 Heat asymptotics and eigenvalue asymptotics. ......................106
4 The Laplace operator on Sn
113
5 The Laplace operator on hyperbolic space.............. 123
6 The harmonic oscillator
126
7 The quantum Coulomb problem
135
8 The Laplace operator on cones
.149
References
,171
9 Scattering by Obstacles......................... 175
1 The scattering problem........................177
2 Eigenfunction expansions
186
3 The scattering oper
viii contents
4 Connections with the wave equation
197
6 Translation representations and the lax- Phillips…………205
5 Wave operators
semigroup z(t)
7 Integral equations and scattering poles
8 Trace formulas; the scattering phase..…………,23
9 Scattering by a sphere.................
239
10 Inverse problems I
248
11 Inverse problems II
12 Scattering by rough obstacles
266
a Lidskii's trace theorem
∴...275
R
eferences
...277
10 Dirac Operators and Index Theory
281
1 Operators of Dirac type........................ 283
2 Clifford algebras
289
3 Spinors
294
4 Weitzenbock formulas
300
5 Index of Dirac operators
306
6 Proof of the local index formula
309
7 The Chern-Gauss-Bonnet theorem ..................................316
8 Spin m
320
9 The Riemann-Roch theorem
325
10 Direct attack in 2-D
11 Index of operators of harmonic oscillator type ........... 345
Refe
58
11 Brownian Motion and Potential Theory.................361
1 Brownian motion and wiener measure
363
2 The Feynman-Kac formula...................... 370
3 The dirichlet problem and diffusion on domains with boundary..375
4 Martingales, stopping times, and the strong Markov property
384
5 First exit time and the poisson integral
..394
6 Newtonian capacity
398
7 Stochastic integrals
412
8 Stochastic integrals, II
423
9 Stochastic differential equations
430
10 Application to equations of diffusion. ................................437
a The T
product formula
448
References
..454
12 The a-Neumann Problem
.457
A Elliptic complexes
460
The a-complex
465
2 Morrey's inequality, the Levi form, and strong pseudoconvexity. 469
3Thne2- estimate and some consequences……………472
Contents
4 Higher-order subelliptic estimates
476
5 Regularity via elliptic regularization.………480
6 The Hodge decomposition and the d-equation. .....................483
7 The Bergman projection and Toeplitz operators
487
8Thea- Neumann problem on(0,q)- forms.…………………494
9 Reduction to pseudodifferential equations on the boundary.... 503
10 The d-equation on complex manifolds and almost
complex manifolds...............
...516
B Complements on the Levi form
27
C The Neumann operator for the dirichlet problem
531
References .............................................................53.5
C Connections and Curvature....................... 539
I Covariant derivatives and curvature on general vector bundles... 540
2 Second covariant derivatives and covariant-exterior derivatives.. 546
3 The curvature tensor of a riemannian manifold
548
4 Geometry of submanifolds and subbundles
..560
5 The gauss-Bonnet theorem for surfaces
574
6 The principal bundle picture
586
7 The chern-Weil construction
594
8 The Chern-Gauss-Bonnet theorem . .................................598
References . .............608
Index
611
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.