开发工具:
文件大小: 2mb
下载次数: 0
上传时间: 2019-07-08
详细说明:一个官方ppt,涵盖了Deep LabV1V2V3的概括总结,能够丰富语义分割论文内容Semantic segmentation
Semantic segmentation
Semantic segmentation is understanding an image at pixel level i. e, we want
to assign each pixel in the image an object class
Partitioning an image into regions of meaningful objects
Assign an object category label
grass
building
water
sheep
car
COW
oa
d
Semantic segmentation
Why semantic segmentation?
Autonomous driving
Medical purposes
We will focus on 3 papers
C3
DeepLabV
background
DeeplabV2
Deeplabv3
horse
semantic segmentation
DeepLabvl& DeepLabv2
Use dcnn for classification to generate a rough prediction of segmentation
(smooth, blurry heat map)
Refine prediction with conditional random field (CRF)
日令
Image
cNn output
CRF output
DCNN
Score maps per
Class
Dog
DCNN
Cat
Background
per pixel
What happens in standard donne
Striding-
put size
Pooling-
to small translations of the input
DeepLab solution
Atrous convolution
CRFS(Conditional Random Fields
DCNN-AtroUs(Holes)
Remove the last 2 pooling layers
Up-sample the original filter by a factor of the strides rate = 2)
Standard convolution responses at only 1/4 of the image positions
■
Convolve image with a filter with holes'> responses at all image positions
corva
stride 2
门[
2
almug tuirvululislI
stade=1
DCNN-AtroUs(Holes)
Small field-of-view> accurate localization
Large field-of-view> context assimilation
Effective filter size increases
Both the number of filter parameters and the number of operations per
position stay constant
DCNN-AtroUs(Holes)
The authors found a good efficiency /accuracy trade-off, Using atroUs
convolution to increase by a factor of 4 the density of computed feature maps,
followed by bilinear interpolation(factor 8)
Input
Input
Aeroplane
DCNN
Aeroplane coarse
Score m
Dee
Coar se Score Imap
Atrous Convolution
Corivoluliarial
Neural
Network
A△
△△△
Final output
Fully Connectec CRF
Bi-linear Inter polation
Final output
Fully Connected CRF
Bi-linear Interpolation
the proposed approach converts image classification networks into dense
feature extractors without requiring learning any extra parameters
AtroUs(Holes)-Some Results
Kernel Rate Fov Params Speed
bef/aft CRF
7×7
448
224
134.3M
1.44
64.38/67.64
4×4
128
65.1M
2.90
59.80/63.74
4×4
224
65.1M
2.90
63.41/67.14
3×3
12
224
20.5M
4.846225/67.64
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.