您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 1[Aug 27]Tutorial [Ariel Kleiner].pdf
  所属分类: 深度学习
  开发工具:
  文件大小: 154kb
  下载次数: 0
  上传时间: 2019-07-02
  提 供 者: weixin_********
 详细说明:在不久的将来,深度学习将会取得更多的成功,因为它需要很少的手工工程,它可以很容易受益于可用计算能力和数据量的增加。目前正在为深度神经网络开发的新的学习算法和架构只会加速这一进程。Probability: Foundations A probability space(Q2, F, P)consists of a set S2 of"possible outcomes a set of events. which are subsets of n2 a probability measure P: F[0, 1] which assigns probabilities to events in F EXample: Rolling a Die Consider rolling a fair Six-sided die. In this case 2={1,2,3,4,5,6} F={0,{1},{2},…{1,2},{1,3},,} P(0)=0,P({1})=,P({3,6})=, Actually, F is a o-field. See Durrett's Probability: Theory and examples for thorough coverage of the measure-theoretic basis for probability theory Probability: Random Variables A random variable is an assignment of (often numeric) values to outcomes inΩ. o For a set a in the range of a random variable x, the induced probability that X falls in A is written as P(XE A Example Continued: Rolling a Die Suppose that we bet $5 that our die roll will yield a 2. Let X: 1, 2, 3, 4, 5,6>5,5 be a random variable denoting our winnings: X=5 if the die shows 2, and X=5 if not Furthermore, P(X∈{5})= - and P(X∈{-5}) 6 Probability: Common Discrete Distributions Common discrete distributions for a random variable x: Bernau(p):p∈0,1];X∈{0,1} P(X=1)=p,P(X=0)=1-p Binomial(p,m):p∈[0,1],n∈N;X∈{0,,,n} P(X=x)=()p(1-p) o The multinomial distribution generalizes the Bernoulli and the Binomial beyond binary outcomes for individual experiments Poisson():入∈(0,∞);X∈N P(X=X) e-X入 Probability: More on Random Variables o Notation: X P means"X has the distribution given by P o The cumulative distribution function(cdf) of a random variable x∈ IRm is defined for x∈ IRm as f(X)=P(X≤X) We say that X has a density function p if we can write P(X≤x)=p()吵y In practice, the continuous random variables with which we will work will have densities o For convenience in the remainder of this lecture we will assume that all random variables take values in some countable numeric set, R, or a real vector space Probability: Common Continuous Distributions Common continuous distributions for a random variable x: Uniform(a,b):a,b∈R,a
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: