文件名称:
Network Anomaly Detection: A Machine Learning Perspective
开发工具:
文件大小: 6mb
下载次数: 0
上传时间: 2019-03-15
详细说明:网络异常侦测系统理论书籍。实验时可以参考。谢谢大家支持。
Dedication
This book is dedicated to my loving wife, Chayanika, who constantly
encouraged, inspired and cooperated with me in the successful comple
tion of this humble work
Dhruba Kumar Bhattacharyya
This book is lovingly dedicated to my father(deuta Benudhar kalita
an accomplished author who passed away recently, and of whom I have
fond memories, and my mother(maa), Nirala Kalita, a school teacher
who has been gone for sixteen years. They are surely looking dowr
from heaven. It is also dcdicatcd to my 7-ycar-old daughter Ananya
Lonie, who I hope will grow to be a smart, thoughtful, compassionate
complished woman
Jugal Kumar Kalita
Contents
List of Figures
List of tables
Preface
XXI
Acknowledgements
XXII
Abstract
XXV
Authors
1 Introduction
1.1 The Internet and modern Networks
1.2 Nctwork Vulnerabilities
4
1.3 Anomalies and anomalies in networks
1.4 Machine learnin
5 Prior Work on Network Anomaly Detection
1. 6 Contributions of this book
1.7 Organization
13
2 Networks and anomalies
17
2.1 Networking B
2. 1.1 Typical View of a Network
18
2.1.2 Communication edia
18
2.1.2.1 Guided m
19
2.1.2.2 Unguided media
2. 1. 3 Network Software
2.1.3.1 Laycrcd Architecture
2.1.3.2 Connection-oriented and Connectionless
2.1.3.3 Service Pr
23
2.1.3.4 Services and Protocols
24
2.1.4 Reference models
2.1.4.1 The Iso osi Relerence Model
2.1.4.2 TCP/IP Reference Model
2.1.5 Protocols
2.1.5.1 Transport Control Protocol
2.1.5.2 User Datagram Pi
90
2.1.5.3 Internet Protocol (IP)
30
2.1.5.4SMTP
31
2.1.5.5SNMP
2.1.5.6ICMP
2.1.5.7FT
32
2.1.5.8 Telnet
2.1.6 Types of Networks
2.1.6.1 Local Area Networks (LAN)
2. 1.6. 2 Wide Area NetworkS(WAN
2.1.6.3 Metropolitan Area Network(MAN)
2. 1.6.4 Wireless networks
.34
2. 1.6.5 Internetworks
35
2.1.6.6 The Internet
2.1.7 Scales of networks
2.1. 8 Network Topologies
37
2.1.8.1Bus,,,
2.1.8.2Ring
2.1.8.3T
2.1.8.4Star
2.1.9 Hardware Components
.39
2.1.9.1 Network Communication Devices
39
2.1.9.2 Network Interface Card (NIC)
43
2.1.9.3 Transceivers
44
2.1.9. 4 Media Converter
45
2.1.10 Network Performance
45
2.1.10.1 Network Performance Constraints
45
2.1.10.2 Network Performance Parameter Tun-
ng
2.1.10.3 Pcrformancc Oricnted Systcm Design. 46
2.1.10.4 Protocols for Gigabit Net works
47
2.1.10.5 Faster Processing of TPDU
2.2 Anomalies in a Network
2.2.1 Network vulnerabilities
4
2.2.1.1 Network Configuration Vulnerabilities. 48
2.2.1.2 Network hardware Vulnerabilities
49
2.2.1.3 Network Perimeter Vulnerabilities
50
2.2.1.4 Network Monitoring and Logging Vul
nerabllitles
50
2.2.1.5 Communication Vulnerabilities
2.2.1.6 Wireless connection vulnerabilities
51
2. 2.2 Security-Related Network Anomalies
51
2.2.3 Who Attacks networks
52
2.2.4 Precursors to an Attack
53
2.2.5 Network Attacks Taxonom
54
2.2.5.1 Denial of Service(DoS)
55
2. 2.5.2 User to Root Attacks(U2R)
56
2.2.5.3 Remote to Local(R2L
56
2.2.5.4 Probc,
57
2.2.6 Discussion
57
3 An Overview of Machine Learning Methods
59
3.1 Introducti
5
3.2 Types of Machine Learning Methods
3.3 Supervised Learning: Some Popular Methods ..... 62
3.3.1 Decision and Regression
.63
3.3.1.1 Classification and Regression Tree .. 64
3.3.2 Support Vcctor Machines
69
3.4 Unsupervised Learning
3.4.1 Cluster Analysis
3.4.1.1 Various Types of Data
3.4.1.2 Proximity Measures
74
3.4.1.3 Clustering Methods
75
3.4.1.4 Discussion
89
3.4.2 Outlier mining
3.4.3 Association Rule Learning
3.4.3. 1 Basic Concepts
99
3.4.4 Frcqucnt Itcmsct Mining Algorithms
..101
3.4.5 Rule generation algorithms
105
3.4.6 Discussion
107
3.5 Probabilistic Learning.··
3.5. 1 Learning Bayes Nels
10
3.5.2 Simple Probabilistic
canin
alvc Baros
.109
3.5.3 Hidden markov models
110
3.5.4 Expectation Maximization Algorithm
112
3.6 Soft Computing
114
3.6.1 Artificial Neural Networks
.115
3.6.2 Rough Se
115
3.6. 3 Fuzzy logic
.116
3.6.4 Evolutionary Computation
117
3.6.5 Ant Colony Optimization
117
3.7 Reinforcement Learning
118
3.8 Hybrid Learning Methods
119
3.9 Discussion
120
4.1 Detection of Network Anomalies at
etecting Anomalies in Networl
123
4.1.1 Host-Based IDS(HIDS)
123
4.1.2 Network-Based IDS(NIDS
124
4.1.4 Supervised Anomaly Detection Approach ou
4.1.3 Anomaly-Based Network Intrusion Deleclic
125
126
4.1.5 Issues
131
4.1.6 Unsupervised Anomaly Detection Approach... 131
4.1.7 Issues
134
4.1.8 Hybrid Detection Approach
134
4.1.9 Issues
135
4.2 Aspects of Network Anomaly Detection
4.2.1 Proximity Measure and types of Data...... 136
1.2.2 Relevant feature identification
4.2.3 Anomaly Score
137
4.3 Datasets
4.3.1 Public datasets
143
4.3.1.1 KDD Cup 1999 Dataset
143
4.3.2 Private Datasets: Collection and Preparation.145
4.3.1.2 NSL-KDD Dataset
4.3.2.1 TUIDS Intrusion Dataset
.,.146
4.3.3 Network Simulation
4. 4 Discussion
153
5 Feature selection
159
5.1 Feature Selection vs. Feature Extraction
.160
5.2 Feature relevance
160
5. 3 Advantagcs
5.4 Applications of Feature Selection
162
5.4.1 Bioinformatics
162
5.4.2 Network Security
,,,,,,,163
5.4.3 Text Categorization
164
5.4.4 Biometrics
164
5.1.5 Content-Based Image Retrieval
5.5 Prior Surveys on Feature Selection
165
5.5.1 A Comparison with Prior Surveys
165
5.6 Problem formulation
168
5.7 Steps in Feature Selection
..169
5.7.1 Subset generation
170
5.7.1.1 Random Subset generation
.170
5.7.1.2 Heuristic Subset Generation
170
5.7.1.3 Complete Subset generation
.171
5.7.2 Feature Subset Evaluation
5.7.2.1 Dependent criteria
.171
5.7.2.2 Independent Criteria
l71
5.7.3 Goodness criteria
5.7.4 Result validation
·
5.7.4.1 External Validation
.172
5.7.1.2 Internal validation
.172
5. 8 Feature Selection Methods: A Taxonomy
173
5.9 Existing Methods of Feature Selection
175
5.9.1 Statistical Fealure Selection
176
5.9.2 Inform
Theoretic Feature Selection
.,.178
5.9.3 Soft Computing methods
180
5.9.4 Clustering and Association Mining Approach
181
5.9.5 Ensemble Approach
5.10 Subset Evalualion Measures
83
5.10.1 Inconsistency rate
183
5.10.2 Relevance
5.10.3 Symmetric Uncertaint
.184
5.10.4 Dependency
5. 10.5 Fuzzy Entropy
5.10.6 Lamming loss
.186
5.10.7 Ranking le
186
5.11 Systems and Tools for Feature Selection
186
5.12 Discussion
191
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.