您好,欢迎光临本网站![请登录][注册会员]  
文件名称: MDS conjecture
  所属分类: 其它
  开发工具:
  文件大小: 157kb
  下载次数: 0
  上传时间: 2019-02-23
  提 供 者: weixin_********
 详细说明:The latest introduction of MDS conjecture, from a french sicentistla: Introduction-The Singleton Bound Singleton Bound. k< n-d+1, for any [n, k, d] code Proof Any 2 codewords disagree in the first n-d+l coordinates somewhere, so there are gn-d+i in total L Linear codes achieving equality are called Maximum Distance Sepa rable(MDs)codes. a general question given d and k, what is the greatest length n of an MDs code? 1b: MDS codes and generic subsets of Fk List k rows generating mds code c as a k x n matrix A Claim. The columns of a give rise to a set s of n vectors, such that any k=n-d+l of them are Ll. We call such an s generic Proof. any k-dependence in columns →∑cA6=0(K|=k) 6∈K →)x6=0 V rows x of a(→x∈C) 6∈K So not all gn-d+i choices for the n-d+1 such(xs sek appear in C. Contradiction! Conversely, any generic s gives rise to an MDs code of length S Ic:(Supposedly) best example We have a correspondence Length of MDS code +Si ize of generic SCFg Try RM codes! We know they meet the Singleton Bound Enc: fb(f(a1),., f(an))as an rS encoder needs to use distinct i,so we can obtain a length of up to n usIn g all possible elements of Under this correspondence, the generic s obtained is the normal ra tiona| curve“{(1,t,t t E Fqg-any k such form a VDM matrix, hence are LI! We can add (0, .. 0, 1) to this S, reaching n=q+1 MDS Conjecture: Hfk≤q, then a generic|S≤q+1. We prove case k≤p(=q) 2a: Segre's Tangent Function Say S C fk is generic. Then, if Z C s has Z=k-2, consider the codimension-1 hyperplanes 2) z with normal vectors vy. We define a variable polynomia 7z(X):=Ⅱ<,X> ∑∩S=Z Then, if x,y, zJUY is a basis, we have TYux (y)Truly (z) Trufz(x (-1)17y YUx(zT (x)Ty{z}() where t=p+k-1-s 2b: Interpolating T For E=a1,., at+2 and Y=k-2 disjoint in 0=∑7(a)I ∈E b∈E\a But all we needed was that{b,a}∪ Y was a basis va≠b∈E.We never sp olit up Idea: exchange elements of E and r. More generally, if r T、(a)I ∈E 0;+1(y) ∈EUy(0rU{ar} t (ar, z, 0r) Here B;=(al, .. ai-1, yi,..., yk-2), as a set and a tuple 2c: Using Segre's lemma to simplify the interpolation equation Any order of a1,..., ar give the same term in the sum So, we have 0(a 0=r! T、(a)II det(ar, z, 8r) k-l, we use 0. which only has k-2 entries. But t=q+k-1-|5 If sp, that S< q+k+1-min k, p But we cannot hope to replace p by g in this proof because of the final step: p!=0 in Fo Nevertheless, in a follow-up paper, Ball relaxed the condition from k< p to k 2p-2, for mds to hold Iso when p Als 2 and k=3 or g-l, the conjecture isn t quite true-insteadS
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: MDSconjecture
 输入关键字,在本站1000多万海量源码库中尽情搜索: