文件名称:
论文笔记—Probabilistic Model-Agnostic Meta-Learning.pdf
开发工具:
文件大小: 2mb
下载次数: 0
上传时间: 2020-07-21
详细说明:论文摘要:元学习仅需少量学习就可以获取先前的先前任务和经验,从而可以从少量数据中学习新任务。但是,短镜头学习中的一个关键挑战是任务模糊性:即使可以从大量先前任务中元学习强大的先验知识,但用于新任务的小数据集也可能太含糊而无法获取单个模型(例如,针对该任务的分类器)。在本文中,我们提出了一种概率元学习算法,该算法可以从模型分布中为新任务采样模型。我们的方法扩展了模型不可知的元学习,它通过梯度下降适应新任务,并结合了通过变分下界训练的参数分布。在元测试时,我们的算法通过将噪声注入梯度下降的简单过程进行自适应,在元训练时,对模型进行训练,以使这种随机自适应过程从近似模型后验中生成样本。我们的实验结果表明,我们的方法可以在模糊的几次镜头学习问题中对合理的分类器和回归器进行采样。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.