文件名称:
CNCC2019-陈华钧-可解释的知识图谱推理及应用.pdf
开发工具:
文件大小: 5mb
下载次数: 0
上传时间: 2020-08-18
详细说明:转自:https://dl.ccf.org.cn/lecture/lectureDetail?id=4663454624843776。
陈华钧,浙江大学*知识引擎联合实验室负责人。
摘要:知识图谱表示的向量化使得我们可以实现更易于泛化的可微分推理。然而, 基于表示学习实现的知识图谱推理和链接预测丢失了传统符号计算方法的可解释性,即:模型无去对基于向量计算或神经网络训练后得出的推理结论进行解释,导致只知结果但不知为什么。在很多真实的应用场景下,黑盒模型的可解释性缺乏导致很多应用不得不放弃采用表示学习方法 。本报告尝试探讨知识图谱与表示学习的可解释性之间的关系,具体针对基于表示学习实现的知识图谱推理的可解释性问题提出一些研究思路和解决方法,并结合真实的应用场景介绍相关的一些实践。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.