文件名称:
基于KL散度与JS散度相似度融合推荐算法.pdf
开发工具:
文件大小: 2mb
下载次数: 0
上传时间: 2020-08-31
详细说明:针对目前大多数推荐算法在计算项目或用户之间的相似度时只依赖于用户之间的共同评分 项,由于用户 - 项目签到矩阵的高稀疏性,导致推荐结果不准确问题,提出一种改进的协同过滤推荐 算法. 该算法基于每个项目基分值概率分布使用 KL 散度计算项目之间的显性反馈相似度,再融合隐 狄利克雷主题分配模型,得到每个项目属于 T 个主题的概率分布,使用 JS 散度计算出项目之间隐性 反馈相似度,将两个相似度融合后融入到传统基于项目的协同过滤算法中并应用到兴趣点推荐,缓 解数据稀疏性问题的同时提高了推荐质量. 在点评数据集 Yelp 上进行实验验证,得出该推荐算法比 传统的推荐算法更优
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.