您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 基于特征融合的K-means微博话题发现模型
  所属分类: 其它
  开发工具:
  文件大小: 490kb
  下载次数: 0
  上传时间: 2020-10-15
  提 供 者: weixin_********
 详细说明:针对传统话题检测方法在微博短文本上存在高维稀疏的缺陷,提出了一种基于特征融合的K-means微博话题发现模型。为了更好地表达微博话题的语义信息,使用在句子中共现的词对向量模型(Biterm_VSM)代替传统的向量空间模型(Vector Space Model,VSM),并结合主题模型(Latent Dirichlet Allocation,LDA)挖掘出微博短文本中的潜在语义,把两个模型得到的特征进行特征融合,并应用K-means聚类算法进行话题的发现。实验结果表明,与传统的话题检测方法相比,该模型的调整兰德系数(Adjusted Rand index,ARI)为0.80,比传统的话题检测方法提高了3%~6%。
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: