文件名称:
解决keras backend 越跑越慢问题
开发工具:
文件大小: 39kb
下载次数: 0
上传时间: 2020-12-17
详细说明:Keras运行迭代一定代数以后,速度越来越慢,经检查是因为在循环迭代过程中增加了新的计算节点,导致计算节点越来越多,内存被占用完,速度变慢。
判断是否在循环迭代过程中增加了新的计算节点,可以用下面的语句:
tf.Graph.finalize()
如果增加了新的计算节点,就会报错,如果没有报错,说明没有增加计算节点。
补充知识:win10下pytorch,tensorflow,keras+tf速度对比
采用GitHub上的代码
运行类似vgg模型,在cifar10上训练,结果朋友torch与tensorflow速度相当,远远快过keras。
pytorch
tensorflow
ke
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.