您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 运用TensorFlow进行简单实现线性回归、梯度下降示例
  所属分类: 其它
  开发工具:
  文件大小: 607kb
  下载次数: 0
  上传时间: 2020-12-25
  提 供 者: weixin_********
 详细说明:线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数(cost function最小)即可。 单变量线性回归: a) 因为是线性回归,所以学习到的函数为线性函数,即直线函数; b) 因为是单变量,因此只有一个x。 我们能够给出单变量线性回归的模型: 我们常称x为feature,h(x)为hypothesis。 上面介绍的方法中,我们肯定有一个疑问,怎样能够看出线性函数拟合的好不好呢? 所以此处,我们需要使用到Cost Function(代价函数),代价函数
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: