开发工具:
文件大小: 253kb
下载次数: 0
上传时间: 2020-12-25
详细说明:梯度下降(Gradient Descent)算法是机器学习中使用非常广泛的优化算法。当前流行的机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现。
本文主要以线性回归算法损失函数求极小值来说明如何使用梯度下降算法并给出python实现。若有不正确的地方,希望读者能指出。
梯度下降
梯度下降原理:将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快。
在线性回归算法中,损失函数为
在求极小值时,在数据量很小的时候,可以使用矩阵求逆的方式求最优的θ值。但当数据量和特征值非常大,例如几万甚至上亿时,使用矩阵求逆根本就不现实。而梯度下降法就是很好的一个选
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.