文件名称:
Python决策树之基于信息增益的特征选择示例
开发工具:
文件大小: 59kb
下载次数: 0
上传时间: 2020-12-24
详细说明:本文实例讲述了Python决策树之基于信息增益的特征选择。分享给大家供大家参考,具体如下:
基于信息增益的特征选取是一种广泛使用在决策树(decision tree)分类算法中用到的特征选取。该特征选择的方法是通过计算每个特征值划分数据集获得信息增益,通过比较信息增益的大小选取合适的特征值。
一、定义
1.1 熵
信息的期望值,可理解为数据集的无序度,熵的值越大,表示数据越无序,公式如下:
其中H表示该数据集的熵值, pi表示类别i的概率, 若所有数据集只有一个类别,那么pi=1,H=0。因此H=0为熵的最小值,表示该数据集完全有序。
1.2 信息增益
熵的减少或者是数据无序度的减少。
二、
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.