文件名称:
机器学习入门 — LDA与PCA算法(公式推导、纯python代码实现、scikit-learn api调用对比结果)
开发工具:
文件大小: 281kb
下载次数: 0
上传时间: 2020-12-21
详细说明:为什么要做降维:
提高计算效率
留存有用的特征,为后续建模使用
在项目中实际拿到的数据,可能会有几百个维度(特征)的数据集,这样的数据集在建模使用时,非常消耗计算资源,所以需要通过使用降维方法来优化数据集
线性判别分析(Linear Discriminant Analysis)
用途:数据预处理中的降维,分类任务(有监督问题)
目标:LDA关心的是能够最大化类间区分度的坐标轴成分
将特征空间(数据集中的多维样本)投影到一个维度更小的 k 维子空间中,同时保持区分类别的信息
原理:投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.