开发工具:
文件大小: 105kb
下载次数: 0
上传时间: 2020-12-20
详细说明:基本回归:线性、决策树、SVM、KNN
集成方法:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees
##学会了数据分层抽样,以及各种回归的代码书写。可能还需要注意调参等。
继续学习网址:使用sklearn做各种回归
数据准备
from matplotlib import pyplot as plt
%matplotlib inline
plt.style.use('fivethirtyeight') #设置matplotlib作图风格
import seaborn as sns
import pandas as pd
sns.set()
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.