您好,欢迎光临本网站![请登录][注册会员]  
文件名称: python实现PCA降维的示例详解
  所属分类: 其它
  开发工具:
  文件大小: 149kb
  下载次数: 0
  上传时间: 2020-12-20
  提 供 者: weixin_********
 详细说明:概述 本文主要介绍一种降维方法,PCA(Principal Component Analysis,主成分分析)。降维致力于解决三类问题。 1. 降维可以缓解维度灾难问题; 2. 降维可以在压缩数据的同时让信息损失最小化; 3. 理解几百个维度的数据结构很困难,两三个维度的数据通过可视化更容易理解。 PCA简介 在理解特征提取与处理时,涉及高维特征向量的问题往往容易陷入维度灾难。随着数据集维度的增加,算法学习需要的样本数量呈指数级增加。有些应用中,遇到这样的大数据是非常不利的,而且从大数据集中学习需要更多的内存和处理能力。另外,随着维度的增加,数据的稀疏性会越来越高。在高维向量空间中探索同样的数
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: