文件名称:
机器学习入门教程5-使用 Python 和 scikit-learn 学习聚类算法
开发工具:
文件大小: 971kb
下载次数: 0
上传时间: 2021-01-07
详细说明:在本教程中,您将使用无监督学习来发现数据中的分组和异常点。在无监督学习中,没有用于显示期望结果的真值(ground truth) 或带标签的数据集。而是获取原始数据并使用各种算法来发现数据集群。如果您想了解无监督学习背后的理论和概念,请阅读用于数据分类的无监督学习。
在集群变得明显(例如在 3D 图表中)后,您可能想将标签应用于集群。这就是使用无监督学习来发现数据中的隐藏特征的一个示例。如果您不关心集群,而只想了解有关异常点的更多信息,那么可以考虑使用异常检测。
值得注意的是,当您尝试可视化数据时,您会倾向于使用二维或三维数据,因为这类数据绘制起来最为容易。但这里使用的方法适用于多维或超多
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.