开发工具:
文件大小: 67kb
下载次数: 0
上传时间: 2021-01-07
详细说明:一、深度学习中的一些常见问题及解决方案
(1)欠拟合
欠拟合即模型无法得到较低的训练误差,导致欠拟合的主要原因是模型复杂度不够,特征维度过少,导致拟合的函数无法满足训练集,误差较大。
(2)过拟合
过拟合即模型的训练误差远小于它在测试数据集上的误差,导致过拟合的主要原因是模型复杂度过高,特征维度过多,导致拟合的函数完美的经过训练集,但是对新数据的预测结果则较差。
(3)解决方案
1、应对欠拟合问题,即增加其特征维度,优化模型,提升复杂度即可。
2、应对过拟合问题,有两种常见的解决方案:权重衰减和丢弃法:
*权重衰减:等价于 L2范数正则化(regularization)。正则化通过为模型损失函
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.