开发工具:
文件大小: 279kb
下载次数: 0
上传时间: 2021-01-07
详细说明:与上一篇文章相同之处
对于交易策略,与上一篇文章相同,当发出买入指令时,一次性全部买入;当发出卖出指令时,一次性全部卖出。还没有添加加减仓操作。
模型仍然用的是DQN模型。
新增内容
在之前的基础上加入了交易手续费、印花税等。
在强化学习这个领域中,reward函数是一个需要精心设计的函数。目前暂时没有好的reward设计思路,但还是修改了之前的reward函数。(其实之前的reward的设计也是错的)
首先将第二天的股票价格的涨跌幅当做reward。
reward =(self.trend[self.t + 1] - self.trend[self.t]) / self.trend[self
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.